
GraphQL API Reference (beta)

2025, © Approval Studio, v. 0.20 beta

Change history

Date version Comment

22/10/2025 0.10 alpha First version, basic functionality, Queries.

24/11/2025 0.20 beta

Project-related mutations implemented.

Metadata-related queries and mutations implemented.
Project tags added to queries and mutations.

User and Client-related queries and mutations implemented.

Webhooks-related queries and mutations implemented.

Please find the PDF version API Reference here.
Please find the most recent API Reference online here.

Table of contents

Approval Studio basic concepts

Authorization/authentication
Token management

https://approval.studio/api/graphql-download-documentation
https://approval.studio/api/graphql-view-documentation

Types

Project
Asset

User

Task

RefDocument
ProjectState

Asset Status

TaskType
TaskStatus

Client

Webhook

WebhookEventType
Queries

projectById

projects

assetById
userById

users

taskById
refDocumentById

authorizationToken

webhooks

Mutations
projectCreate

projectUpdate

assetUpload
assetDelete

taskCreateUploadAsset

taskCreateUploadRefDoc

taskCreateReviewAsset
taskCreateReviewAssetExt

taskCreateUploadAssetExt

taskCreateUploadRefDocsExt
taskApprove

taskReject

taskComplete

taskDelete
refDocUpload

refDocAddUrl

refDocDelete
taskApprove

taskComplete

refDocUpload

webhookCreate
webhookDelete

General

This is a GraphQL API to the Approval Studio, design review, and packaging approval SAAS.
API utilizes its flow, authorization, storage, and so on.

Approval Studio basic concepts

From the business point of view, Approval Studio is based on a multitenant concept when a

single user may be a part of one or more tenants (called Companies). Please see
https://approvalstudio.freshdesk.com/ for detailed instructions on how to work with Approval

Studio.

https://approval.studio/
https://approvalstudio.freshdesk.com/

Company

Users

Projects

Workflows

Assets Tasks ReferenceDocuments

Annotations

Authorization/authentication

The API authorization is based on an authorization token which should be requested prior to

using any available API queries or mutations.
The flow is the following: request auth token by calling authorizationToken() query (see)

providing Approval Studio’s username/password. If ok, the method returns an authorization

token that you should provide with any other API call as an HTTP header like this:

Authorization: Bearer XXXXXXXXXXX .

The token is valid for a limited amount of time, 120 minutes by default. When the token is
expired and still used you will have the error like this:

{

 "errors": [
 {

 "message": "Access denied for field 'projectById' on type 'QueryRoot'.",

 "locations": [
 {

 "line": 2,

 "column": 3

 }
],

 "extensions": {

 "code": "ACCESS_DENIED",
 "codes": [

 "ACCESS_DENIED"

]

 }
 }

]

}

Token management

A single query that provides you with the authorization token is authorizationToken() :

 query {

 authorizationToken(

 name: "username@mail.com"

 password: "password$1"
 keepAliveTime: 123)

 {

 token,
 expirationDate

 }

 }

Sample result is :

{

 "data": {
 "authorizationToken": {

 "token": "eyJhbGciOiJIUzxxxxx",

 "expirationDate": "2025-10-21T20:23:05.1539332Z"
 }

 }

}

Now you can use this token to authorize access to the rest of the API.

Types

Project

A project, the primary system’s entity, that aggregates properties, assets, reference

documents, tasks etc.

{
 uID,

 name,

 state,
 customer,

 projectName,

 design,
 revision,

 createdAt,

 owners {

 ...
 },

 assets {

 ...
 },

 refDocs {

 ...
 },

 tasks {

 ...
 }

}

Fields

uID: String!

The unique id of the project, a GUID-like string, unique throughout the system.

name: String

The name of the project, a mandatory field.

state: ProjectState

Project state, see ProjectState.

customer: String

Customer name.

This is one of the descriptive project’s attributes, just plain text, that could be use to

categorize a project by, in this case, by a customer.

projectName: String

Project name.

Like a customer above, this is an optional descriptive project’s attribute that point to a

customer name or some kind of a customer’s code.

design: String

Design name. Optional descriptive project’s attribute.

revision: String

Revision number. Optional descriptive project’s attribute.

createdAt: DateTime!

UTC date and time when the project was created.

tags: [String]

Optional tags associated with the project, array of plain string.

metaData: [StringStringKeyValuePair]

Optional metadata as a list of key-value pairs.

reviewStatus: ProjectReviewStatus

Review status based on the tasks; statistics. It’s how many tasks are pending, how many
reviewing assets/tasks approved or rejected.

owners: [User]

List of one or more project owners who are allowed to manage the project, create tasks, add

or remove assets etc.
See User.

assets: [Asset]

List of assets associated with the project.

Assets are files, images or documents, that are subject of reviewing process.
The important part of asset management is version, an auto-incremental integer value,

associated with every asset.

So if you need to have only the most recent version(s) you need to group assets by name and

select the asset with

See Asset.

refDocs: [RefDocument]

List of reference documents associated with the project.

Reference documents are files of any type of URLs that contains some reference data related

to the projects like detailed projects descriptions, standards, requirements etc.

See RefDocument.

tasks: [Task]

List of active tasks associated with the project.

See Task.

Asset

Asset is a file uploaded by a user interactively, using API or any available integration and is a

subject of reviewing.
Reviewing assets is a primary purpose of the whole system.

Note: Images, documents and video assets are the same from point of view of the API.

Asset file types:

.pdf , .ai , .tiff , .jpeg , .gif , .bmp , .png

.docx , .xls , .xlsx , .pptx , .ppt , .ppsx , .pps , .pot , .potx , .dotx , .dot ,

.odt , .ods , .rtf , .txt

.htm / .html

.mp4

{

 uID,

 name,

 version,
 status,

 fileSize,

 createdAt
}

Fields

uID: String!

The unique id of the asset, a GUID-like string, unique throughout the system.

name: String!

The name of the asset, full file name like "flyer_merchant.pdf" .

The asset name used to group assets by versions, so when you upload an asset with the same
name, it obtains a sequential version number, so the most recent asset with this name has has

biggest version number.

version: Int!

Asset version, a consequent number.
Version is a consequential integer, assigning at asset uploading. The version is incremented for

every unique asset name, for example:

file1.pdf - version 1

file1.pdf - version 2
file1.pdf - version 3

file2.pdf - version 1

file2.pdf - version 2

If, for instance, upload a file file2.pdf once more time, it will have version 3.

status: AssetStatus

Asset processing status.

Asset uploading is, generally, time-consuming process, that, possible, may end with fail.

So this status indicates that the asset is processing now, a processing completed or failed.

See AssetStatus

fileSize: Int

Size of the asset file, bytes.

createdAt: DateTime!

UTC date and time when the asset was created.

User

User is a primary unit of authorization in the system, and every entity somehow connected to

some user (or multiple users).
Project, asset, reference document, task etc are created or processed on behalf of a user.

uID: String!

The unique id of the user.

name: String!

The name of the user, usually in form or “First name Last name” or only last name if the first
name is not provided at user registration.

email: String

The user’s email, mandatory.

clients: [Client]

List if clients (tenants) the users belongs to.

Task

Task is created to assign a user with activity like reviewing assets or uploading or smth. else.

{

 uID,

 comment,
 status,

 dueDate,

 closedDate,
 createdAt,

 taskType,

 assignedTo {

 uID
 email,

 name

 }
}

Fields

uID: String!

The unique id of the task.

comment: String

An optional comment that a project owner may provide with the task to provide some
additional information.

status: TaskStatus

Task activity status, see []

dueDate: DateTime

An optional due date that the task’s creator associates with the task when creates it.

closedDate: DateTime

A UTC date and time of when task is closed.

createdAt: DateTime!

A UTC date and time when a test was created.

taskType: TaskType

A task type, that describes what the nature of the task: upload assets, documents, review
assets etc.

assignedTo: User

A user this task is assigned to, see User.

RefDocument

Reference document associated with a project.

Reference documents are files of any type of URLs that project owner(s) wants to attach to a
project and, optionally, share with team working on the project. Those can be requirements,

standards, samples etc.

Reference documents are simpler than assets, no statuses, no processing etc.

{

 uID,

 name,

 size,
 createdAt

}

Fields

uID: String!

The unique id of the reference document.

name: String!

The name of the document or URL. When it is a file name, then the reference document is a

downloadable file; when it’s a URL, then it’s available externally and Approval Studio

size: Int!

Size of the file.

createdAt: DateTime!

UTC date/time when the document was uploaded and assigned to a project.

ProjectState

Project activity state.

This is an enumeration that represent possible project states.

State

ACTIVE Project is active, owner(s) can manage it, create tasks, upload assets etc.

ON_HOLD
This just name for projects that should not be active, but still fully

functional.

COMPLETED Project is completed, not active tasks allowed.

ARCHIVED Project moved to archive, no any activity allowed.

IN_TRANSIT A short-living state when a project changes it’s state.

AssetStatus

Status of the asset processing.

Status

PENDING Asset is processing now.

Status

PROCESSED Asset has successfully uploaded and processed and is available to use.

FAILED
Asset processing failed due any reason. Asset not available and not visible

in the list of assets.

Note: Version number would be still increasing with every failed asset

processing attempt.

TaskType

A task type, enumeration, that describes the nature of the task: upload assets, documents,
review assets, assign users etc.

Type

UPLOAD_ASSETS Asset uploading task, assigned to a local user.

UPLOAD_REF_DOCS
Reference document uploading task, assigned to a local
user.

REVIEW_ASSETS
Asset or multiple assets review task, assigned to a local

user.

EXTERNAL_REVIEW_ASSETS
Asset or multiple assets review task, assigned to an
external user (email).

UPLOAD_CHANGED_ASSET
New version of an asset uploading task, assigned to a

local user.

UPLOAD_VIDEO
Video asset (.mp4) uploading task, assigned to a local

user.

EXTERNAL_REVIEW_VIDEO
Video asset (.mp4) uploading task, assigned to an

external user (email).

REVIEW_VIDEO
Video asset or multiple assets review task, assigned to

a local user.

Type

EXTERNAL_UPLOAD_ASSET
Asset uploading task, assigned to an external user
(email).

EXTERNAL_UPLOAD_REFDOC
Reference document(s) uploading task, assigned to an

external user (email).

ASSIGN_USER_ROLES
Workflow-related task, that require a local user to
assign user roles for the given workflow.

TaskStatus

Task activity status, enumeration.

Status

PENDING
Task is in active state, waiting to be either done or

deleted.

CLOSED Task is done.

APPROVED
Review asset task, internal or external, is done and

reviewer approved the asset(s).

REJECTED
Review asset task, internal or external, is done and
reviewer rejected the asset(s).

APPROVED_WITH_CHANGES

Review asset task, internal or external, is done and

reviewer approved the asset(s) but left a comment what
should be changed/done.

Client

Client or so called tenant. Approval Studio allows users to be internal users of multiple clients.

Note: in most cases users belong to a single tenant. The current version of the GraphQL API is

made based on assumption that users belong to a single tenant only.

uID: String!

The unique id of the asset.

name: String!

The name of the asset, file name.

isPrimary: Boolean!

A flag indicating this is the default client, used by default in mutations.

created: DateTime!

UTC-based date/time of the client creation.

Webhook

Please read detailed webhooks processing tutorial here – Approval Studio API guide
Fields

uID: String!

Webhook’s UID.

uRL: String!

The webhooks URL.

secret: String

A unique string associated with the webhook.

The API host provides a Secret with every event object posted on an endpoint. The endpoint
needs to check against this ID for every incoming post to avoid spamming. Keep secret safe.

eventType: WebhookEventType

A type of events this webhook is assigned to to.

createdAt: DateTime!

A UTC based webhook created date and time.

WebhookEventType

Webhook’s type of event to handle.
Every time you register a new webhook you need to provide which event (or multiple events)

will be a trigger.

https://approval.studio/api/view-documentation#webhooks

Event code Description

PROJECT_CREATED Fires when a new project is created.

PROJECT_EDITED
Fires when a project’s attribute changes, like name, description,

due date, etc.

PROJECT_STATE Fires when project state changes.

ASSET_UPLOADED
Fires when an asset or a new version of an existing asset is
uploaded.

ASSET_DELETED Fires when asset deleted.

REF_DOC_UPLOADED A new reference document uploaded.

REF_DOC_DELETED An existing reference document is deleted.

ANNOTATION_ADDED An annotation to asset is created.

ANNOTATION_EDITED An annotation is edited.

ANNOTATION_DELETED An annotation is deleted.

TASK_CREATED A new task of any type is created.

TASK_COMPLETED A task is marked as completed.

TASK_DELETED A task is deleted.

TASK_APPROVED An asset review task marked as approved.

TASK_REJECTED An asset review task marked as rejected.

WEBHOOK_TEST Dummy event object for the testing endpoint

ALL Any event above will trigger the webhook invocation.

Queries

Query Type

projectById() Project

assetById() Asset

userById() User

taskById() Task

refDocumentById() RefDocument

projectById

projectById(uid: ID!): Project

Returns a project by a unique project id with related entities: project owners, assets, reference

documents, tasks etc.

Returns Project or error if no project found.

Request:

query projectById {

 projectById(uid:"XXXXXXXXXXXXXXX")

 {
 uID,

 name,

 state,
 customer,

 projectName,

 design,

 revision,
 createdAt,

 owners {

 uID,
 name,

 email

 },
 assets {

 uID,

 name,
 version,

 status,

 fileSize,

 createdAt
 },

 refDocs {

 uID,
 name,

 size,

 createdAt

 },
 tasks {

 uID,

 comment,
 status,

 dueDate,

 closedDate,
 createdAt,

 taskType,

 assignedTo {
 uID

 email,

 name
 }

 }

 }

}

projects

projects(

query: String
uIDs: [String]

dateFrom: DateTime

dateTo: DateTime

states: [ProjectState]
metaData: [StringStringKeyValuePairInput]

limit: Int

): [Project]

Arguments

query: String

Plain text substring to look for in the projects’ attributes, optional.

uIDs: [String]

List of projects identifier to get. This parameter is ignored when null or empty.

dateFrom: DateTime

Beginning of the interval of the projects’ creation UTC date/time to look for, optional,

inclusive.

dateTo: DateTime

End of the interval of the projects’ creation UTC date/time to look for, optional, exclusive.

states: [ProjectState]

Optional list of the project states to look for. ACTIVE is the default one.

metaData: [StringStringKeyValuePairInput]

List of project’s metadata. When provided, the search result wil include only projects that

contain the provided metadata.

limit: Int

Optional maximum number of records to return, default value is 100, maximum 1000.

assetById

Returns an asset by the given unique identifier with all the properties and associated objects.

Returns Asset or error if no project found.

Request:

query assetById {
 assetById(uid: "XXXXXXXXXXXXXXX") {

 uID

 name
 version

 status

 fileSize
 createdAt

 }

}

userById

Returns an user by the given unique identifier.

Returns User or error if no user found.

query userById {

 userById(uid: "XXXXXXXXXXXXXXX") {

 uID
 name

 email

 }

}

users

Returns all active users in the system.

query Users {

 users {
 uID,

 email,

 name,
 clients {

 uID,

 name,

 isPrimary
 }

 }

}

taskById

Returns a task by the given unique identifier. Set of fields are vary depends on the task type.

Returns Task or error if no task found.

Request:

query taskById {
 taskById(uid: "XXXXXXXXXXXXXXX") {

 uID,

 comment,

 status,

 dueDate,
 closedDate,

 createdAt,

 taskType,
 assignedTo {

 uID

 email,

 name
 }

 }

}

refDocumentById

Returns an reference document by a unique identifier, a file or a reference by URL in the field

‘Name’.

Returns RefDocument or error if no document found.
Request:

query refDocumentById {

 refDocumentById(uid: "XXXXXXXXXXXXXXX") {

 uID
 name

 size

 createdAt
 }

}

authorizationToken

Returns an authorization token by the given username and password.

authorizationToken(

name: String!

password: String!

keepAliveTime: Long): AuthToken

Parameters:

name [String!]

The email address associated with the user’s account. Required for user authentication.

password [String!]

The user’s password. Used in conjunction with the email for credential verification.

keepAliveTime [Long]

The optional keep-alive time (in minutes) for the session. If provided, this may extend the
duration of the authentication token’s validity. Default value is 30 minutes.

Request:

query {

 authorizationToken(
 name: "useremail@mail.com"

 password: "pwd!$rty"

 keepAliveTime: 300
) {

 token

 expirationDate

 }
}

webhooks

Returns list of active webhooks.

query {
 webhooks {

 uID,

 uRL,
 secret,

 eventType

 }
}

Arguments

uID: String

Optional webhook UID.

Mutations

Mutation Type

projectCreate() Project

projectUpdate() Project

projectSetState() Project

assetUpload() Asset

assetDelete() Asset

taskCreateUploadAsset() Task

taskCreateUploadRefDoc Task

taskCreateReviewAsset Task

taskCreateUploadAssetExt Task

taskCreateUploadRefDocsExt Task

taskCreateReviewAssetExt() Task

taskApprove() Task

taskComplete() Task

taskReject() Task

taskDelete() Task

refDocUpload RefDocument

refDocAddUrl() RefDocument

refDocDelete() RefDocument

projectCreate

Creates a new project with the given attributes.

projectCreate(
name: String!

customer: String

project: String
design: String

revision: String

description: String

tags: [String]
metaData: [StringStringKeyValuePairInput]

 dueDate: DateOnly

): Project

Arguments

name: String!

Project’s name, mandatory.

customer: String

Customer name, optional.

project: String

Design project name, optional.

design: String

Name of the project’s design, optional.

revision: String

Project’s revision name, optional.

description: String

Project’s description, optional.

tags: [String]

List of project’s tags, optional.
metaData: [StringStringKeyValuePairInput]

List of project’s metadata entries, optional.

dueDate: DateOnly

Project’s completion due date, optional.

projectUpdate

Updates an existing project with the given properties. You may provide one or many

properties to update.

projectUpdate(

uid: String!

name: String
customer: String

project: String

design: String

revision: String
description: String

tags: [String]

description: String
metaData: [StringStringKeyValuePairInput]

dueDate: DateOnly

): Project

Arguments

uid: String!

UID of the project to update.

name: String

Project’s name.
customer: String

Customer name.

project: String

Design project name.

design: String

Name of the project’s design.

revision: String

Project’s revision name.

description: String

Project’s description.
tags: [String]

List of project’s tags.

metaData: [StringStringKeyValuePairInput]

List of project’s metadata entries.
dueDate: DateOnly

Project’s completion due date.

projectSetState

Changes project’s state according to the state rules:

InTransit

Active

OnHold

Complete

Archived

The diagram above explains the pre-requisite check for changing the project’s state.

Note: The diagram above is a recommended way to change project’s state, it is not
mandatory to follow it, but highly recommended.

projectSetState(

uid: String!
state: ProjectState!

): Project

Arguments

uid: String!

UID of the project to update.

state: ProjectState!

Project’s state to set.

assetUpload

Uploads a new asset from the given URL.

ApprovalStudio will download an asset of any appropriate type, process it, and assign to a

given project, so that it is available to review, send etc.
Before processing asset, the ApprovalStudio validates all the pre-requisites: files type, file

storage space for your account etc. If everything ok, it set the asset status PENDING and

returns the Asset instance. The asset meanwhile is being processed and will get status

PROCESSED when processing completes successfully.

Note: GraphQL does not work with files, so if you need to upload a file, use the Approval
Studio REST API.
Note: Processing files require some time, usually a couple of seconds, sometimes more, up to

minutes, so if you need to know when the uploaded asset is ready to use, pool assetById()

query waiting for the asset status goes to PROCESSED or FAILED .

assetUpload(

projectUID: String!

url: String!
fileName: String

): Asset

assetDelete

Deletes an existing asset by asset UID. When completes, the asset file with all related

metadata is deleted, the account’s storage space is reclaimed by the asset size.

assetDelete(assetUID: String!): Asset

taskCreateUploadAsset

Creates an Asset Uploading Task and assign it to a given (internal) user.

This task requires a user, the task assigned to, to upload one or more assets to the given
project.

taskCreateUploadAsset(

projectUID: String!

userUID: String!
dueDate: DateOnly

comment: String

): Task

Arguments

projectUID: String!

Project UID the task will be associated with.

userUID: String!

UID of the user the task will be assigned to.

dueDate: DateOnly

Optional task’s due date.

comment: String

Optional comment, plain string. A user will this this comment UI and e-mail/Slack/WhatsUp
notification.

taskCreateUploadRefDoc

Creates a Reference Document Uploading Task and assign it to a given user.

This task requires a user, the task assigned to, to upload one or more reference documents to

the given project.

taskCreateUploadRefDoc(

projectUID: String!

userUID: String!

dueDate: DateOnly
comment: String

): Task

Arguments

projectUID: String!

Project UID the task will be associated with.

userUID: String!

UID of the user the task will be assigned to.

dueDate: DateOnly

Optional task’s due date.

comment: String

Optional comment, plain string.

taskCreateReviewAsset

Creates a Asset Review Task and assign it to a given user.

Asset view task requires that the given user click on the URL he/she will get on UI or email

and review the asset(s) make it either Approve or Reject.

taskCreateReviewAsset(

projectUID: String!

userUID: String!
assetsUIDs: [String]!

dueDate: DateOnly

comment: String
): Task

Arguments

projectUID: String!

Project UID the task will be associated with.

userUID: String!

UID of the user the task will be assigned to.

assetsUIDs: [String]!

UIDs of the assets to review.

dueDate: DateOnly

Optional task’s due date.

comment: String

Optional comment, plain string.

taskCreateReviewAssetExt

Creates an External Asset Review Task and assign it to a given external user (using email as a

user identifier).

The same task a the Review Asset task, but assigned on a person outside the company’s
account and identified by e-mail address instead of User UID.

taskCreateReviewAssetExt(
projectUID: String!

email: String!

assetsUIDs: [String]!

dueDate: DateOnly
comment: String

emailSubject: String

password: String
isAllowDownloadAssets: Boolean

isReadOnly: Boolean

): Task

Arguments

projectUID: String!

Project UID the task will be associated with.

email: String!

Email of the user the task will be assigned to.

assetsUIDs: [String]!

UIDs of the assets to review.

dueDate: DateOnly

Optional task’s due date. When Due Date is provided and is overdue, Approval Studio will

notify a user.

comment: String

Optional comment, plain string.

emailSubject: String

Optional email subject. If email notification are active, a user will get an email describing the

task, with this email subject line.

password: String

Optional password, plain string.

If password is provided, the ApprovalStudio will ask a user to provide this password to get

access to the review tool.

isAllowDownloadAssets: Boolean

Optional flag, indicating that the user will be allowed to download any assets files, associated

with the task.

isReadOnly: Boolean

Optional read only flag. When set, it makes the review tool read-only, giving the user
permission to view only, but prevent to provide any changes, making notes or annotations.

taskCreateUploadAssetExt

Creates an External Upload Asset Task and assign it to a given external user (using email as a

user identifier).

taskCreateUploadAssetExt(
projectUID: String!

email: String!

dueDate: DateOnly

comment: String
emailSubject: String

password: String

): Task

Arguments

projectUID: String!

Project UID the task will be associated with.

email: String!

Email of the user the task will be assigned to.

dueDate: DateOnly

Optional task’s due date.

comment: String

Optional comment, plain string.

emailSubject: String

Optional notification email subject, plain string.

password: String

Optional password, plain string.

taskCreateUploadRefDocsExt

Creates an External Upload Reference Document Task and assign it to a given external user

(using email as a user identifier).

taskCreateUploadRefDocsExt(
projectUID: String!

email: String!

dueDate: DateOnly
comment: String

emailSubject: String

password: String
): Task

Arguments

projectUID: String!

Project UID the task will be associated with.

email: String!

Email of the user the task will be assigned to.

dueDate: DateOnly

Optional task’s due date.

comment: String

Optional comment, plain string.

emailSubject: String

Optional notification email subject, plain string.

password: String

Optional password, plain string.

taskApprove

Approves assets(s) associated with a given Asset Review Task, internal or external.

taskApprove(taskUID: String!): Task

Arguments

taskUID: String!

UID of the task to approve.

taskReject

Reject assets(s) associated with a given Asset Review Task, internal or external.

taskReject(taskUID: String!): Task

Arguments

taskUID: String!

UID of the task to reject.

taskComplete

Marks a given task as Completed.

This method can be used in conjunction with asset or reference doc uploading.

First you upload a file, then, when uploading is competed, you may close the task.

taskComplete(taskUID: String!): Task

Arguments

taskUID: String!

UID of the task to complete.

taskDelete

Deletes a given task.

This marks a task as deleted, it will not appear on UI nor participate in
approve/reject/complete calculations.

taskDelete(taskUID: String!): Task

Arguments

taskUID: String!

UID of the task to delete.

refDocUpload

Uploads a reference document from the given URL and associate it with the given project.

refDocUpload(

projectUID: String!

url: String!
fileName: String

): RefDocument

Arguments

projectUID: String!

Project ID the reference document would be associated to.

url: String!

Reference document’s URL to download from.

fileName: String

Optional file name; if not provided, the file name would be taken from the URL.

refDocAddUrl

Creates a reference document as a given URL (no file downloading) and associate it with the

given project.

refDocAddUrl(
projectUID: String!

url: String!

): RefDocument

Arguments

projectUID: String!

Project ID the reference document would be associated to.

url: String!

Reference document reference (URL) that to be added to the list of the reference documents

as URL.

refDocDelete

Deletes a given reference document, file or URL.

refDocDelete(refDocUID: String!): RefDocument

Arguments

refDocUID: String!

ID of the reference document to delete.

webhookCreate

webhookCreate(
uRL: String!

eventType: WebhookEventType!

): Webhook

Creates a new webhook registration.

Arguments

uRL: String!

URL of the webhook entry point.

eventType: WebhookEventType!

ID of the reference document to delete.

webhookDelete

webhookDelete(uID: String!): String

