
API Reference

2026, © Approval Studio, v. 1.33

Please find the PDF version API Reference here.

General

This is a REST API to the Approval Studio, design review, and packaging approval SAAS.
API utilizes its flow, authorization, storage, and so on.

Approval Studio basic concepts

From the business point of view, Approval Studio is based on a multitenant concept when a single

user may be a part of one or more tenants (called Companies). Please see
https://approvalstudio.freshdesk.com/ for detailed instructions on how to work with Approval

Studio.

Currently the only point where you may choose a tenant is project creation, please see POST

/api/v1/project / Request.

https://approval.studio/api/download-documentation
https://approval.studio/
https://approvalstudio.freshdesk.com/

Company

Users

Projects

Assets Tasks ReferenceDocuments

Annotations

REST HTTP Codes

API may return one of the following HTTP codes:

HTTP
Code

Response

200 Success. See the method description to get what and how the method returns.

400

Validation error. API validates input parameters and when finds an invalid parameter,
throws HTTP code 400. Those errors are related to parameters’ presence, format,

emptiness, etc. Validating against a database, like looking for data by an ID is

conducted separately and reflected in case of error, in HTTP codes 404, 406, 412,

etc., please see the method’s description for detailed explanations.

{

 "errors": {

 "parameterName": [
 "'parameterName' must not be empty."

]

 },
 "type": "https://tools.ietf.org/html/rfc7231#section-6.5.1",

 "title": "One or more validation errors occurred.",

 "status": 400,

 "traceId": "|a4a45224-4a7c03bbd5172369."

}

HTTP
Code

Response

404,
406,

412

Resource not found. Generally, it means that requested resources are either not
found or somehow restricted to proceed. For example, if a given project id is non-

existent, the project is not found so gets HTTP code 404.

429

Rate Limit Reached. API host calculates the number of calls per sec, minute, and
hour, and when the rate of requests reaches the limit, throws HTTP code 429,

which means that the API host is overloaded and the client needs to wait before

retrying.

If the request gets blocked then the client receives a text response like this:

Status Code: 429
Retry-After: 58

Content: API calls quota exceeded! maximum admitted 2 per 1m.

Retry-After header value is expressed in seconds. And X-Rate-Limit-XXX HTTP headers are
injected in the response:

X-Rate-Limit-Limit: the rate limit period (eg. 1m, 12h, 1d)

X-Rate-Limit-Remaining: number of requests remaining
X-Rate-Limit-Reset: UTC date-time (ISO 8601) when the limits reset

HTTP
Code

Response

500

Infrastructure failure. This means critical unrecoverable technical error generally
related to database connections, external services availability, hardware failure, etc.

Depending on the client application flow you can retry the calling method or halt

processing and call our technical support.

Authorization/authentication

The API is based on an authorization token which should be requested prior to using any available

API methods.

The flow is the following: request auth token by calling POST​/api​/v1​/token​/login (see) providing
Approval Studio’s username/password. If ok, the method returns an authorization token that you

should provide with any other API call as an HTTP header like this: Authorization: Bearer

XXXXXXXXXXX .

The token is valid for a limited amount of time, 600 minutes by default. When the token is expired
and still used you will have the response HTTP code 401, Unauthorized :

{

 "isError": true,
 "type": "https://httpstatuses.com/401",

 "title": "Unauthorized",

 "status": 401,
 "instance": "/api/v1/annotation"

}

If so, you need to obtain a new token.
If the token is invalid or not provided, it gets the same response HTTP code 401.

Client POST​ token​/login Business method

POST
​/api​/v1​/token​/login

Email/PasswordEmail/Password

HTTP 200 + TokenHTTP 200 + Token

Authorization ok.

HTTP 404 Auth failed.HTTP 404 Auth failed.

Authorization failed.

Here you could use
API's methods

providing the token
with every call.

GET / POST/
PUT / DELETE
v1/api/xxxxx

Token + RequestToken + Request

Validates token.

Token valid, business data - {json}Token valid, business data - {json}

Token invalid, HTTP 401Token invalid, HTTP 401

Client POST​ token​/login Business method

Token management

POST ​/api​/v1​/token​/login

Authorizes a user. When successfully authorized is returns an authorization token which must be
supplied to every API as a header, like "Authorization: Bearer YYYYYYYYYYYYYYYYY..." .

Request

{

 "userName": "john.smith@gmail.com",

 "password": "Q@fG%^18_A",
 "keepAliveTime": 12 // Optional, minutes.

}

keepAliveTime is an optional parameter that defines how much time the token will be valid.

Response’s expirationDate provides an exact time of the token expiration (see below).
Note: When keepAliveTime is zero, the default value is used (600 min/10 hours).

Curl:

curl -X POST "https://api.approval.studio/api/v1/token/login" \

 -H "accept: text/plain" \
 -H "Content-Type: application/json-patch+json" \

 -d "{\"userName\":\"joshn.smith@pepsico.com\",\"password\":\"Q@fG%^18_A~\", \"ke

Responses

HTTP Code Response

200 Success. Login successful, AUTH token provided.

{

 "version": "1.0",

 "statusCode": 200,
 "message": "POST Request successful.",

 "result": {

 "token": "eyJhbGciOiJIUzI1NiIsI[...]", // This is the auth token.
 "status": "Success",

"expirationDate": "2022-02-15T18:42:15.8398451Z", // A date/time when the token e

 "user": {
 "userUID": "XXXXXXXXXXXXXXXXXXXXXXXXXXX",

 "fullName": "John Smith",

 "email": "john.smith@gmail.com",
 "role": "RegularUser|Administrator"

 }

 }

}

HTTP
Code

Response

400 Error: Parameters’ validation failed. See HTTP code 400 description.

404
Error: User with given email and password not found. Either the provided

credentials are wrong or the user is locked and not able to login anymore.

{
 "version": "1.0",

 "statusCode": 404,

 "message": "Authorization failed.",
 "result": {

 "status": "WrongCredentials"

 }

}

HTTP
Code

Response

412
Error: The user uses Lite payment plan option. API is available only for Pro users.
Please consult our support on this: https://approval.studio/contact/

GET ​/api​/v1​/token​/validate

Validates an auth token. This method is an kind of a health checker, that validates an

authentication token, if it’s still valid. You may use it to ensure that the your authentication process

completed successfully or that the token is still valid in case of a long-running scenarious like

external workflow engines where tokens are saved for further use.

Request

Curl:

curl -X 'GET' \

 'http://localhost:8000/api/v1/token/validate' \

 -H "accept: text/plain" \
 -H "Content-Type: application/json-patch+json" \

Responses

https://approval.studio/contact/

HTTP Code Response

200 Success. authentication token provided in the Auth header is valid.

{
 "version": "1.0",

 "statusCode": 200,

 "message": "POST Request successful.",
 "result": {}

}

HTTP Code Response

401 Error: Parameters’ validation failed.

Project management

Project attributes:

Name Explanation

projectUID r/o System-wide unique project identifier, GUID

projectState
Projects are in one of the following states:

Active,OnHold,Completed,InTransit,Archived .

name Free-form project name, string, max-length 50 chars, mandatory.

customer Project’s customer name, max-length 50 chars, optional.

project
Business project or product name this Approval Studio project

related for, max-length 50 chars, optional.

design Point to which type of design this is, max-length 50 chars, optional.

revision
Ideally, a sequential number or version number; generally a free

form string max-length 50 chars, optional.

description
Any kind of additional information, descriptions, comment etc.,
max-length 200 chars, optional.

tags
Array of free-form single-word tags associated with the project,

optional, max 20 elements of 20-chars tags.

Name Explanation

dueDate
Optional date, UTC, that points to when the project is desired to
be completed.

reviewStatus r/o
pendingCount - count of non-completed review tasks assigned on

the project

approvedCount - count of approves made on the project’s assets

rejectedCount - count of rejected made on the project’s assets

created r/o Refers to when the project was created, UTC.

templateUID

It is a new concept, introduced in API v.1.15.
Project template is a set of some data, usually a JSON, that

administrator can provide when creating a new project. That could

be a list of users, emails, etc any other business-specific attributes

that could be used in building a business flow and should be
specific for every project.

For example, you might need to create a review task just after the

project creation and you use API to implement this. In that case,

you may provide UID of a user to create a review task for. The
template itself doesn’t make any changes in the default application

flow, it’s just a customizable attribute.

kanbanColumnUID
It is an unique ID of the Kanban column this project is placed to on
the dashboard.

folderUID
It is an unique ID of the folder this project is placed to on the

dashboard.

Note: Kanban columns and folders are ways to group projects based on some your business needs,
probably, based on a kind of state or position on flow. This is out of scope of this document.

Method/Path Description

GET ​/api/v1/project Gets a list of projects.

POST /api/v1/project Creates new project.

PUT​ /api/v1/project Edits existing project.

DELETE​ /api/v1/project Deletes a project.

GET ​/api/v1/project/proofreport Gets a link to a proof report for a project.

PUT​ /api/v1/project/state Changes project’s state.

GET ​/api/v1/project

Returns one or more projects and projects’ assets, tasks, and reference documents – depending on

the parameters passed.

All the parameters are optional; the method always uses AND combination of all the parameters.

Parameter Type & Explanation

ProjectUID

string Unique project UID or comma-separated list of project UIDs.

Note: behavior is changed in v.1.15.
Now if ProjectUID is provided and this project belongs to an

appropriate client, you will get project data regardless of the owner

list and whether you are an admin or not. In other words, if this
project belongs to your client (tenant), you will get it.

Note: validation changes in v.1.29.

If multiple projects UIDs provided, the result will contain only those

projects that are found. Wrong, deleted etc will be silently omitted.

States
string One or more project states, comma-separated, see

ProjectStates above. Default value is Active,OnHold,Completed .

Query

string A free-form text to case-sensitive search in projects’

attributes: Project name , Customer , Project , Design , Revision ,
Description , Tags .

IsLoadAssets
boolean , false by default. If it is set, returns assets for every project

as a child collection.

IsLoadLastVerAssets
boolean , true by default. If set, only the most recent version of

every asset be returned. Ignored, if IsLoadAssets is not set.

IsLoadTasks
boolean , false by default. If set, a list of active tasks for every

project would be returned as a child collection.

IsLoadRefDocs
boolean , false by default. If set, a list of uploaded reference

documents for every project would be returned as a child collection.

IsLoadMetadata
boolean , false by default. If set, metadata for every project would
be returned as a list of key-value entries.

Request URL

https://api.approval.studio/api/v1/project?ProjectUID=XXXXX&

States=Active%2COnHold%2CCompleted%2CArchived%2CInTransit&Query=Some%20Free%20Text&

IsLoadAssets=true&IsLoadLastVerAssets=true&IsLoadTasks=true&IsLoadRefDocs=true

Curl:

curl -X GET "https://api.approval.studio/api/v1/project?

 ProjectUID=XXXXXXXXXXXXXXXXXXX&States=Active%2COnHold%2CCompleted&

 Query=Some%20Free%20Text&IsLoadAssets=true&
 IsLoadLastVerAssets=true&IsLoadTasks=true&IsLoadRefDocs=true" \

-H "accept: text/plain" \

-H "Authorization: Bearer YYYYYYYYYYYYY"

Default States is Active,OnHold,Completed .

If ProjectUID is provided and no project is found, an empty list returns an HTTP code 200.

Response

[

 {
 "projectUID": "GUID",

 "projectState": "Active|OnHold|Completed|InTransit|Archived",

 "name": "string",
 "customer": "string",

 "project": "string",

 "design": "string",
 "revision": "string",

 "description": "string",

 "tags": [

 "tag 1", "tag 2"...
],

 "dueDate": "2020-11-22T23:00:53.425Z",

 "reviewStatus": { // Project-level proof review status
 // (see proofing flow explanations).

 "pendingCount": 1, // The asset has 1 uncompleted review task

 "approvedCount": 2, // The asset has been approved 2 times
 "rejectedCount": 3 // The asset has been rejected 3 times

 },

 "created": "2020-11-22T23:00:53.425Z",
 "template": {

 "templateUID": "XXXXXXXXXXXXXXX",// Template's unique ID.

 "name": "string", // Template name, presumable unique for a gi
 "data": { // Optional data, associated with the projec

 "key": "value", // Json or free-form string.

 "key1": "value1"

 }
 }

 "assets": { // Optional,

 "asset_one.jpeg": // Unique asset name
 [// List of assets' versions, one or more

 {

 "assetUID": "GUID",
 "version": 0,

 "status": "Pending|Processed|Failed", // Or integer, 0,1,2

 "reviewStatus": { // Proof review status (see proofing
 "pendingCount": 1, // The asset has 1 uncompleted review

 "approvedCount": 2, // The asset has been approved 2 time

 "rejectedCount": 3 // The asset has been rejected 3 time

 },
 "pagesCount": int, >=1,

 "created": "2020-11-22T23:00:53.425Z",

 "fileSize": int, bytes,
 "reviewUrl": string, // URL to a prooftool to view/proof t

 "thumbnailUrl": string // URL to asset's thumnail image (.jp

 "fullSizeBitmapUrl": string // URL to converted asset's image (.p
 }

],

 "asset_two.pdf": [
 {

 "assetUID": "GUID",

 "version": 0,
 "status": "Pending|Processed|Failed",

 "reviewStatus": {

 "pendingCount": 1,

 "approvedCount": 2,
 "rejectedCount": 3

 },

 "pagesCount": 0,
 "created": "2020-11-22T23:00:53.425Z",

 "fileSize": 0,

 "reviewUrl": "https://app.approval.studio/xxx",
 "thumbnailUrl": "https://app.approval.studio/yyy"

 "fullSizeBitmapUrl": "https://app.approval.studio/zzz"

 }
],

 ...

]
 },

 "tasks": [

 {

 "taskUID": "GUID",
 "type": "UploadAssets|UploadRefDocs|ReviewAssets|ExternalReviewAssets|UploadC

 "status": "Pending|Closed|Approved|Rejected",

 "comment": "string",
 "dueDate": "2020-11-22T23:00:53.425Z", // Optional.

 "created": "2020-11-22T23:00:53.425Z",

 "closed": "2020-11-22T23:00:53.425Z",
 "user": {

 "userUID": "GUID",

 "fullName": "string",
 "email": "string"

 },

 "assets": [
 "Asset GUID", "Asset GUID 2"...

],

 "reviewUrl": string // URL to launch a prooftool for the gi
 // Appears only for the ReviewAsset tas

 }

],

 "refDocs": [
 {

 "refDocGUID": "GUID",

 "created": "2020-11-22T23:00:53.425Z",
 "name": "filename.ext",

 "fileSize": int, bytes.

 }
],

 "metadata": [

 "orderNumber": "A19KQ64A", // Key-Value pair(s) of metadata
 "contectEmail": "contact@mail.com"

],

 "client": {
 "clientUID": "YYYYYYYYYYYY", // Client's uniquie ID.

 "name": "Yourcompany Ltd" // Client name.

 },

 "kanbanColumnUID": "j2ax", // Optional kanban column UID for this pr
 "folderUID": "dv5t", // Optional folder UID for this project.

 "workflow": {

 "workflowUID": "WWWWWWWW", // Optional workflow UID.
 "name": "Primary Workflow" // Optional workflow's name.

 }

 }
]

POST /api/v1/project

Creates a new project taking mandatory project name and a list of owners and a set of optional

attributes.

Request

Field Type & Explanation

clientUID
string[50] Optional client UID. See GET ​/api​/v1​/users / Responses. If
no client ID is provided, the first client will be chosen by default.

projectName string[200] Mandatory project name, free-form text.

Field Type & Explanation

customer string[200] Optional customer name.

project string[50] Optional (sub)project name.

design string[50] Optional design type/name, like “package” or “banner” etc.

revision string[50] Optional revision number, sequential or free-form.

description string[1000] Optional project description, free-form text.

tags
string array Optional tag list, max 20 tags of max length of 25 chars

each.

dueDate

ISO date Optional UTC date (or date-time) that point to a date when
project supposed to be completed. The date affects the project’s status

and sort order on the application dashboard.

projectOwnersUIDS
string array Mandatory list of the project owner(s)'s UIDs. At least one

owner must be provided, max number of owners is 20.

 {

 "clientUID": "string", // Optional tenant(client) ID.

 "projectName": "string", // Project name, mandatory.

 "customer": "string",
 "project": "string",

 "design": "string",

 "revision": "string",
 "description": "string",

 "tags": [

 "string", "string"
],

 "dueDate": "2020-12-07T20:56:38.818Z",

 "projectOwnersUIDS": [// Project owner(s), at least one owner must be provi
 "XXXXXXXX"

],

 "templateUID": "string" // Optional project template UID. See client list to
 "folderUID": "string" // Optional folder UID. See client list to get an app

 }

curl -X POST "https://api.approval.studio/api/v1/project"

 -H "accept: text/plain"

 -H "Authorization: Bearer YYYYYYYY"
 -H "Content-Type: application/json-patch+json"

 -d "{\"projectName\":\"string\",\"customer\":\"string\",\"project\":\"string\",\

Responses

HTTP Code Response

200 Project created and instance returned.

 {

 "projectUID": "string",

 "projectState": 0,
 "name": "string",

 "customer": "string",

 "project": "string",
 "design": "string",

 "revision": "string",

 "description": "string",
 "tags": [

 "string"

],
 "dueDate": "2020-11-27T13:37:07.534Z",

 "created": "2020-11-27T13:37:07.534Z",

 "template": {
 "templateUID": "string",

 "name": "string",

 "data": "string or object"

 },
 "client": {

 "clientUID": "string",

 "name": "string"
 },

 "kanbanColumnUID": "string",

 "folderUID": "string,
 "workflow": {

 "workflowUID": "string",

 "name": "string"
 }

 }

HTTP Code Response

400 Error: Bad Request. One of the pre-requisites failed to validate

PUT​ /api​/v1​/project

Changes project’s attribute(s) including name, due date, and list of owners (edit project).

Request

{
 "projectUID": "ProjectUID", // ID of project to edit

 "projectName": "string",

 "customer": "string",

 "project": "string",
 "design": "string",

 "revision": "string",

 "description": "string",
 "tags": [

 "string", "string", "string"

],
 "dueDate": "2020-12-02",

 "projectOwnersUIDS": [

 "UserUID","UserUID" ...
],

 "folderUID": "string"

 }

Omit those properties you want to stay untouched; so if you provide a request like this below, only

the project name will be updated:

{

"projectUID": "XXXXXXXXXX", // Project ID to edit
"projectName": "New name"

}

Curl:

curl -X PUT "http://api.approval.studio/api/v1/project"

 -H "accept: text/plain"

 -H "Authorization: Bearer YYYYYYYYYYYYYYYYY..."
 -H "Content-Type: application/json"

 -d "{\"projectUID\":\"XXXXXXXXXXX\",\"projectName\":\"New Name\"}"

Responses

HTTP Code Response

200 Success. The project’s attributes changed.

{

 "projectUID": "XXXXXXXXXX",

 "projectState": "Active|OnHold|Completed|InTransit|Archived",
 "name": "string",

 "customer": "string",

 "project": "string",

 "design": "string",

 "revision": "string",

 "description": "string",
 "tags": [

 "string", "string", ...

],
 "dueDate": "2020-11-30",

 "created": "2020-11-30T12:09:36.426Z",

 "kanbanColumnUID": "string",

 "folderUID": "string,
 "workflow": {

 "workflowUID": "string",

 "name": "string"
 }

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Project with the given ID not found or it has been already deleted.

Error: Folder with the given UID not available for this project.

Error: Project owner with the UID [XXXXXXXXXX] not available.

{
 "version": "1.0",

 "statusCode": 404,

 "message": "Project not found or already deleted."
}

HTTP
Code

Response

406
Error: Project editing is possible only when the project is Active or OnHold .
Completed , Archived or InTransit projects are not mutable. Please see PUT​ /api​

/v1​/project​/state.

{

 "version": "1.0",
 "statusCode": 406,

 "message": "Can't edit completed or archived projects."

}

HTTP
Code

Response

412
Error: Project must be in state Completed or Archived. If not, the code 412

returns.

{

 "version": "1.0",
 "statusCode": 412,

 "message": "Only archived or on-hold project can be deleted."

}

DELETE ​/api​/v1​/project

Deletes a project.

This is undoable; once the project is deleted, it disappears from a list of projects; assets and

uploaded reference documents are deleted as well.

The project should have the status Completed or Archived to be deleted; an error will be thrown

elsewhere,

Request

{
 "projectUID": "XXXXXXXXXXXX"

}

Curl:

curl -X DELETE "https://api.approval.studio/api/v1/project" \

 -H "accept: text/plain" \

 -H "Authorization: Bearer YYYYYYYYYYYYYYYYY..." \
 -H "Content-Type: application/json" \

 -d "{\"projectUID\":\"XXXXXXXXXXXXXX\"}"

Responses

HTTP Code Response

200 Success. Project deleted.

{
 "version": "1.0",

 "statusCode": 200,

 "message": "Project deleted."

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Project with the given ID not found, and, therefore project deletion failed.

{

 "version": "1.0",
 "statusCode": 404,

 "message": "Project not found."

}

HTTP Code Response

412 Error: Project must be either Completed or Archived to be deleted.

GET​ /api​/v1​/project​/proofreport

Returns URL to get a printable proof report for the given project. The method does not allow direct

downloading.

Read result/downloadURL and navigate it to get the report body. The report is a plain single-layer
PDF 1.4 file.

Request

The request is a set of URL GET parameters separated by &:

curl -X GET "https://api.approval.studio/api/v1/project/proofreport?ProjectUID=XXXXXX

 -H "accept: text/plain" \

 -H "Authorization: Bearer YYYYYY"

Parameter Type & Explanation

ProjectUID string[50] Mandatory project identifier.

Responses

HTTP Code Response

200 Success. Proof report URL generated.

{

 "version": "1.0",

 "statusCode": 200,
 "message": "GET Request successful.",

 "result": {

 "downloadURL": "https://approval.studio/ProofApi/GetProofReport/DDDDDDDDDDDDDDDDD
 "project": {

 "projectUID": "3AB3A5F58951467B975378198C7265D1",

 "projectState": "Complete",
 "name": "Project for Pepsi Co",

 "tags": ["tag1", "tag2"],

 "created": "2020-12-02T13:57:15.568992"
 }

 }

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

-

404
Error: Project with the given ID not found and therefore proof report generation

failed.

{

 "version": "1.0",

 "statusCode": 404,
 "message": "Project not found."

}

PUT​ /api​/v1​/project​/state

Changes project’s state according to the state rules:

InTransit

Active

OnHold

Complete

Archived

The diagram above explains the pre-requisite check for changing the project’s state.

Note: The diagram above is a recommended way to change project’s state, it is not mandatory to
follow it, but highly recommended.

Note: Detailed description of the project management is out of scope of this document.

States

Those are the states:

State Explanation

Active Work on a project is undergoing. This is where all the review work is going on.

OnHold
Due to some reason you want to postpone working on a project. Setting state to

OnHold moves the project to a separate lane. Tasks are still intact, the only

difference from Active is a position on a separate lane on the dashboard.

Completed

When setting the state to Completed all project tasks are deleted and the project
itself moves from the dashboard to a separate screen where all completes are

stored separately. All the assets and reference documents are preserved as well

as history etc. The project goes read-only.

Archived

This is generally the same as Completed but assets and reference documents are

moved to a remote, slow storage. The process of moving files to other storage

could take a while, so when it is going on, the system marks a project as InTransit
(see below).

InTransit
Project is locked to InTransit state by API itself when it is switching to Archive
state or, vice versa, from Archived to Active. You can’t set this state forcedly.

Request

{

 "projectUID": "XXXXXXXXXXX",
 "projectState": "Active|OnHold|Completed|Archived"

}

Responses

HTTP Code Response

200 Success. The project’s state changed.

{

 "projectUID": "XXXXXXXXXX",

 "projectState": "Active|OnHold|Completed|Archived",
 "name": "string",

 "customer": "string",

 "project": "string",
 "design": "string",

 "revision": "string",

 "description": "string",
 "tags": [

 "string", "string", ...

],
 "dueDate": "2020-11-30",

 "created": "2020-11-30T12:09:36.426Z"

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Project with the given ID not found or it has been already deleted.

{

 "version": "1.0",

 "statusCode": 404,
 "message": "Project not found."

}

HTTP
Code

Response

406
Error: The project with the given ID already has the requested state; no updating

made.

{
 "version": "1.0",

 "statusCode": 412,

 "message": "Project already has state XXXX."

}

GET /api/v1/project/meta

This methods gets a key-value list of the metadata for the given project.

The concept of project’s metadata is the following: you can assign any kind of textual invisible for

end-users data to a chosen project. Technically this is a list of key-value pairs.

Project’s metadata might be used to provide data necessary for integration with other software, like

order number, linked with a project, email of contact person etc.

Note: Apart from this method, you may use GET ​/api/v1/project with flag IsLoadMetadata set to

true .

Curl:

curl -X 'GET' \
 'https://api.approval.studio/api/v1/project/meta?ProjectUID=XXXXXXXXXXXXXXXXXXX' \

 -H 'accept: text/plain'

 -H 'Authorization: Bearer ZZZZZZZZZZZZZZZZZZZZZZ'

Parameter Type & Explanation

ProjectUID string Unique project identifier.

Responses

HTTP Code Response

200 Success. List of metadata entries returned.

{
 "version": "1.0",

 "statusCode": 200,

 "message": "GET Request successful.",
 "result": { // Metadata group

 "orderNumber": "A19KQ64A", // Key-Value pair(s) of metadata

 "contectEmail": "contact@username.com"
 }

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Project with the given ID not found.

{
 "version": "1.0",

 "statusCode": 404,

 "message": "Project not found."
}

POST /api/v1/project/meta

This methods adds one or more metadata entry to the given project.

Request:

{
 "projectUID": "D37683CE23E24079951DC48C96114094",

 "metadata": {

 "orderNumber": "A19KQ64A",
 "contectEmail": "contact@username.com"

 }

}

Curl:

curl -X 'POST' \

 'https://api.approval.studio/api/v1/project/meta' \

 -H 'accept: text/plain' \
 -H 'Authorization: Bearer YYYYYYYY' \

 -H 'Content-Type: application/json-patch+json' \

 -d '{
 "projectUID": "D37683CE23E24079951DC48C96114094",

 "metadata": {

 "orderNumber": "A19KQ64A",
 "contectEmail": "contact@username.com"

 }

}'

Responses

HTTP Code Response

200 Success. Metadata added successfully.

{
 "version": "1.0",

 "statusCode": 200,

 "message": "Metadata added."
}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Project with the given ID not found.

{
 "version": "1.0",

 "statusCode": 404,

 "message": "Project not found."

}

HTTP
Code

Response

406
Error: Completed and archived projects can’t be altered. You can add metadata to

only project with statuses Active or OnHold .

PUT /api/v1/project/meta

This methods edits an existing metadata entry of the given project.
Request:

{

 "projectUID": "XXXXXXXXXXXXXX",
 "key": "orderNumber",

 "value": "A19KQ64A"

}

Curl:

curl -X 'PUT' \
 'https://api.approval.studio/api/v1/project/meta' \

 -H 'accept: text/plain' \

 -H 'Authorization: Bearer YYYYYYYY' \

 -H 'Content-Type: application/json-patch+json' \
 -d '{

 "projectUID": "XXXXXXXXXXXXXX",

 "key": "orderNumber",
 "value": "A19KQ64A"

}'

Responses

HTTP Code Response

200 Success. Metadata changed successfully.

{

 "version": "1.0",

 "statusCode": 200,
 "message": "Metadata edited."

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Project with the given ID not found.

{
 "version": "1.0",

 "statusCode": 404,

 "message": "Project not found."
}

HTTP
Code

Response

406
Error: Completed and archived projects can’t be altered. You can add metadata to
only project with statuses Active or OnHold .

DELETE /api/v1/project/meta

This methods deleted an existing metadata entry of the given project.

Request:

{
“projectUID”: “XXXXXXXXXXXXXX”,

“key”: “orderNumber”

}
Curl:

curl -X 'DELETE' \

 'https://api.approval.studio/api/v1/project/meta' \
 -H 'accept: text/plain' \

 -H 'Authorization: Bearer YYYYYYYY' \

 -H 'Content-Type: application/json-patch+json' \

 -d '{
 "projectUID": "XXXXXXXXXXXXXX",

 "key": "orderNumber"

}'

Responses

HTTP Code Response

200 Success. Metadata entry deleted successfully.

{

 "version": "1.0",
 "statusCode": 200,

 "message": "Metadata deleted."

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Project with the given ID not found.

{

 "version": "1.0",

 "statusCode": 404,

 "message": "Project not found."

}

HTTP
Code

Response

406
Error: Completed and archived projects can’t be altered. You can add metadata to
only project with statuses Active or OnHold .

GET /api/v1/project/meta/projects

This methods gets one or more projects that contain metadata with the given key and optional

value.

Curl:

curl -X 'GET' \
 'https://api.approval.studio/api/v1/project/meta/projects?Key=orderNumber&Value=A19

 -H 'accept: text/plain' \

 -H 'Authorization: Bearer YYYYYYYY'

Responses

HTTP Code Response

200 Success. Search successful. Actually, zero or more projects found.

{

 "version": "1.0",
 "statusCode": 200,

 "message": "GET Request successful.",

 "result": [
 {

 "projectUID": "XXXXXXXXXXXXX",

 "projectState": "Active",

 "name": "Integratiion Design",
 "tags": [

 "Design"

],
 "reviewStatus": {

 "pendingCount": 5,

 "approvedCount": 4,
 "rejectedCount": 0

 },

 "created": "2022-10-17T16:30:14.971521",

 "owners": [

 "DDDDDDDDDDDDDD"
],

 "client": {

 "clientUID": "CCCCCCCCCCCCCC",
 "name": "Enterprize Company"

 },

 "metadata": [

 "orderNumber": "A19KQ64A",
 "contectEmail": "contact@mail.com"

]

 },
 [...]

]

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

POST /api/v1/project/kanban/column

This methods moves a given project to a given kanban column on the dashboard.
Curl:

curl -X 'POST' \

 'https://api.approval.studio/api/v1/project/kanban/column' \
 -H 'accept: text/plain' \

 -H 'Content-Type: application/json-patch+json' \

 -d '{
 "projectUID": "XXXXXXXXXX", // ProjectUID as is throughout the system.

 "kanbanColumnUID": "asdFxQ" // A valid kanban column UID.

}'

Note: You may retrieve a list of Kanban column UIDs from the GET ​/api​/v1​/users method.

HTTP
Code

Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

404 Error: Project with the given UID not found.

HTTP
Code

Response

404 Error: Kanban column with the given UID not available for this project.

Please read kanban column UIDs using the GET ​/api​/v1​/users method

406 Error: Can’t edit completed or archived projects.

You may move a project to a given kanban column only when this project is active
or on hold.

POST /api/v1/project/folder

This methods moves a given project to a given folder on the dashboard.

Curl:

curl -X 'POST' \
 'https://api.approval.studio/api/v1/project/folder' \

 -H 'accept: text/plain' \

 -H 'Content-Type: application/json-patch+json' \
 -d '{

 "projectUID": "XXXXXXXXXX", // ProjectUID as is throughout the system.

 "folderUID": "49lu" // A valid folder UID.

}'

Note: You may retrieve a list of folder UIDs from the GET ​/api​/v1​/users method.

HTTP
Code

Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

404 Error: Project with the given UID not found.

404 Error: Kanban column with the given UID not available for this project.

Please read kanban column UIDs using the GET ​/api​/v1​/users method

406 Error: Can’t edit completed or archived projects.

You may move a project to a given folder only when this project is active or on

hold.

Asset management

Method/Path Description

GET​ /api​/v1​/assets Gets an asset instance.

DELETE​ /api​/v1​/assets Deletes an asset.

POST ​/api​/v1​/assets​/upload Uploads an asset from file.

POST ​/api​/v1​/assets​/upload_url Uploads an asset from the Internet.

GET​ /api​/v1​/assets​/download Downloads an asset.

GET​ /api​/v1​/assets​/proofreport Gets a link to a proof report for an asset.

GET​ /api​/v1​/asset

Gets an asset instance by a given asset id.

Parameter Type & Explanation

AssetUID string Unique asset GUID.

Curl:

curl -X GET "http://api.approval.studio/api/v1/asset?AssetUID=XXXXXXX" -H "accept: te

Responses

HTTP Code Response

200 Success. Asset instance returned.

 "version": "1.0",

 "statusCode": 200,
 "message": "GET Request successful.",

 "result": {

 "assetUID": "xxxxxxxxxx",
 "version": 1,

 "name": "drawing.pdf",

 "status": "Processed",

 "reviewStatus": { // Proof review status (see pro

 "pendingCount": 1, // The asset has 1 uncompleted
 "approvedCount": 2, // The asset has been approved

 "rejectedCount": 3 // The asset has been rejected

 },
 "pagesCount": 3,

 "created": "2020-10-22T08:09:05.778512",

 "fileSize": 1063800,

 "reviewUrl": "https://app.approval.studio/xxx", // URL to launch prooftool to v
 "thumbnailUrl": "https://app.approval.studio/yyy" // URL to asset's thumbnail ima

 "fullSizeBitmapUrl": "https://app.approval.studio/zzz/pageNum" // URL to converte

 }
}

Note: fullSizeBitmapUrl is provided in form "https://baseurl/assettoken/0" .

– “0” here is a zero-based page number, zero is used by default, but you can change it to whatever
you need.

Please remember that some image asset formats are multipage (.pdf, .tiff, office formats etc.).

– You will get http code 404 if provide wrong page number, bigger than asset’s page count or if you

provide negative value.

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Asset with the given ID not found.

{

 "version": "1.0",

 "statusCode": 404,
 "message": "Asset not found."

}

DELETE​ /api​/v1​/asset

Deletes an asset by a given asset id.
Asset deletion is an unrecoverable operation that leads to removing the asset from the project and

deleting a file from storage.

It is no way to restore an asset after it has been deleted.

Request

{
 "AssetUID": "XXXXXXXXXXXX"

}

Curl:

curl -X DELETE "https://api.approval.studio/api/v1/asset" \
 -H "accept: text/plain" \

 -H "Authorization: Bearer YYYYYYYYYY" \

 -H "Content-Type: application/json-patch+json" \
 -d "{\"assetUID\":\"XXXXXXXXXXXX\"}"

Responses

HTTP Code Response

200 Success. Asset deleted.

{
 "version": "1.0",

 "statusCode": 200,

 "message": "Asset deleted."
}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Asset with the given ID not found.

{

 "version": "1.0",
 "statusCode": 404,

 "message": "Asset not found."

}

POST ​/api​/v1​/asset/upload

Uploads an asset and initiates asset processing.

It validates initial input and adds the asset to the asset processing queue, which runs

asynchronously. After uploading you need to pool asset status to get to know when it is processed

or failed to process.
You can upload assets directly to a selected project or point an upload task as an upload initiator.

Time required to process assets is highly dependent on asset file size, dimensions, number of

pages, and on how much processing node(s) are loaded.

Asset processing may fail or be rejected due to a number of reasons, business and technical.

Those could be asset type (file extension), resolution or physical size (in case of vector images
- PDF/AI, etc), payment plan, and a number of other options. Please refer to the company’s

site or/and support to learn more.

Request

Parameter Type & Explanation

ProjectUID string Unique project ID, mandatory.

FileName form file Asset file name, mandatory. Note: It’s just a name, not a path.

Curl:

curl -X POST "http://api.approval.studio/api/v1/asset/upload?ProjectUID=XXXXXXXXX&Tas

 -H "accept: text/plain"
 -H "Authorization: Bearer YYYYYYYYYYYYYY"

 -H "Content-Type: multipart/form-data"

 -F "uploadedFile=assetfilename.jpg;type=image/jpeg"

Responses

HTTP Code Response

200 Success. "Asset uploaded successfully and is pending to process.

{

 "version": "1.0",
 "statusCode": 200,

 "message": "Asset uploaded successfully and is pending to process.

 Track its status to catch when it is ready to use.",
 "result": {

 "assetUID": "AAAAAAAAAAAAAAAAA" // newly generated asset id.

 }

}

HTTP
Code

Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

403
Error: You have reached the storage limit for your plan (XXX Gb) and therefore not

allowed to upload new assets.

This code means you have no free storage space to upload a new asset; asset is not

uploaded and will not be processed any further. Please buy more storage or contact

support to assist in dealing with this.

404 Error: Project UID is either invalid or points to a non-existing or inactive project.

404 Error: Task UID is either invalid or points to a non-existing or inactive task.

{

 "version": "1.0",
 "statusCode": 404,

 "message": "Project UID provided is either invalid or points to a non-existing or i

 "Task UID provided is either invalid or points to a non-existing or inac
}

HTTP Code Response

412 Error: Only task types UploadAssets and UploadChangedAsset are allowed.

412
Error: In case when it is UploadChangedAsset task: the file to upload must be
the same type as the original file.

Note: UploadChangedAsset means that the project owner(s) requested a new

version of the asset to upload. It is mandatory that all asset versions must be the

same type, i.e. all versions of the same asset are PDF or JPEG or PNG, etc. If you
provide a different file type, you get this error.

{

 "version": "1.0",
 "statusCode": 412,

 "message": "Only task types UploadAssets and UploadChangedAsset are allowed." -or-

 "File to upload must be the same type as the original file (.pdf)."

}

POST ​/api​/v1​/asset/upload_url

This method works, generally, in the same way as /api​/v1​/asset/upload with the only difference

that the file to upload is taken from the publicly accessible http(s) server.

A mandatory URL parameter points to the file to upload and process as a project’s asset.

Request

Parameter Type & Explanation

ProjectUID string Unique project ID, mandatory.

FileName

form file Asset file name, optional. Note: It’s just a name, not a path. If not

provided, the filename would be assigned automatically using filename taken
form http header Content-Disposition . If this header is not provided, filename

would be "asset.extension" where extension is taken from http content type.

URL string URL to download a file from, mandatory.

Curl:

curl -X POST "http://api.approval.studio/api/v1/asset/upload_url"
 -H "accept: text/plain"

 -H "Authorization: Bearer YYYYYYYYYYYYYY"

 -H "Content-Type: application/json-patch+json"
 -d '{

 "projectUID": "XXXXXXXXX",

 "fileName": "filename.jpeg",
 "url": "https://cdn.images.com/ZZZZZZZZZZZ"

 }'

Responses

HTTP Code Response

200 Success. "Asset uploaded successfully and is pending to process.

{

 "version": "1.0",

 "statusCode": 200,
 "message": "Asset uploaded successfully and is pending to process. Track it's statu

 "result": {

 "assetUID": "XXXXXXXXX"
 }

}

HTTP
Code

Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

403
Error: You have reached the storage limit for your plan (XXX Gb) and therefore not

allowed to upload new assets.

This code means you have no free storage space to upload a new asset; asset is not

uploaded and will not be processed any further. Please buy more storage or contact

support to assist in dealing with this.

404 Error: Project UID is either invalid or points to a non-existing or inactive project.

{

 "version": "1.0",

 "statusCode": 404,
 "message": "Project UID provided is either invalid or points to a non-existing or i

}

GET​ /api​/v1​/asset/download

Returns URL to download asset.

Request

Parameter Type & Explanation

AssetUID string Unique project ID, mandatory.

Curl:

curl -X GET "http://api.approval.studio/api/v1/asset/download?AssetUID=XXXXXXXXXXXXXX

 -H "accept: text/plain"

 -H "Authorization: Bearer YYYYYYYYYYYYYYYYYY"

Responses

HTTP Code Response

200 Success. URL generated.

{
 "version": "1.0",

 "statusCode": 200,

 "message": "GET Request successful.",
 "result": {

 "downloadURL": "https://approval.studio/ProofApi/DownloadAsset/ZZZZZZZZZZZ[...]",

 "asset": {
 "assetUID": "XXXXXXXXXXXXX",

 "version": 1,

 "name": "FileName.jpg",
 "status": "Processed",

 "pagesCount": 1,

 "created": "2020-12-03T23:54:53.40858",
 "fileSize": 20743

 }

 }

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Asset with the given ID not found.

{

 "version": "1.0",
 "statusCode": 404,

 "message": "Asset not found."

}

GET​ /api​/v1​/asset​/proofreport

Returns URL to download asset’s proof report.

Request

Parameter Type & Explanation

AssetUID string Unique project ID, mandatory.

Curl:

curl -X GET "http://api.approval.studio/api/v1/asset/proofreport?AssetUID=XXXXXXXXXXX

 -H "accept: text/plain"

 -H "Authorization: Bearer YYYYYYYYYYYYYYYYYY"

Responses

HTTP Code Response

200 Success. URL generated.

{

 "version": "1.0",
 "statusCode": 200,

 "message": "GET Request successful.",

 "result": {
 "downloadURL": "https://approval.studio/ProofApi/GetProofReport/ZZZZZZZZZZZ[...]"

 "asset": {

 "assetUID": "XXXXXXXXXXXXX",

 "version": 1,
 "name": "FileName.jpg",

 "status": "Processed",

 "pagesCount": 1,
 "created": "2020-12-03T23:54:53.40858",

 "fileSize": 20743

 }
 }

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Asset with the given ID not found.

{
 "version": "1.0",

 "statusCode": 404,

 "message": "Asset not found."
}

Reference documents management

Method/Path Description

POST /api/v1/refdoc/upload
Uploads a reference document and initiates document’s

processing.

POST

/api/v1/refdoc/upload_url

Uploads an document taken from the publicly accessible
URL and initiates its processing.

POST /api/v1/refdoc/add_url Adds a URL as a reference document.

GET /api/v1/refdoc/download Returns a URL to download the reference document.

DELETE/api/v1/refdoc Deletes a reference document.

POST /api/v1/refdoc/upload

Uploads a document as a local file and assigns it to the given project.
generally, works like asset uploading,

Request

Parameter Type & Explanation

ProjectUID string Unique project ID, mandatory.

FileName form file Document file name, mandatory. Note: It’s just a name, not a path.

Curl:

curl -X POST "http://api.approval.studio/api/v1/refdoc/upload?ProjectUID=XXXXXXXXX&Fi

 -H "accept: text/plain"

 -H "Authorization: Bearer YYYYYYYYYYYYYY"
 -H "Content-Type: multipart/form-data"

 -F "uploadedFile=refdocfilename.jpg;type=image/jpeg"

Responses

HTTP Code Response

200 Success. "Asset uploaded successfully and is pending to process.

{

 "version": "1.0",

 "statusCode": 200,
 "message": "Document uploaded successfully and is pending to process.

 Track its status to catch when it is ready to use.",

 "result": {
 "refDocUID": "AAAAAAAAAAAAAAAAA" // newly generated document id.

 }

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Project UID is either invalid or points to a non-existing or inactive project.

{

 "version": "1.0",

 "statusCode": 404,
 "message": "Project UID provided is either invalid or points to a non-existing or i

}

POST /api/v1/refdoc/upload_url

This method uploads reference document by taking it from the publicly accessible http(s) server.

A mandatory URL parameter points to the file to upload and process as a project’s asset.

Request

Parameter Type & Explanation

ProjectUID string Unique project ID, mandatory.

Parameter Type & Explanation

FileName

form file Document file name, optional. Note: It’s just a name, not a path. If not
provided, the filename would be assigned automatically using filename taken

form http header Content-Disposition . If this header is not provided, filename

would be "asset.extension" where extension is taken from http content type.

URL string URL to download a file from.

Curl:

curl -X POST "http://api.approval.studio/api/v1/refdoc/upload_url"

 -H "accept: text/plain"

 -H "Authorization: Bearer YYYYYYYYYYYYYY"
 -H "Content-Type: application/json-patch+json"

 -d '{

 "projectUID": "XXXXXXXXX",
 "fileName": "filename.jpeg",

 "url": "https://cdn.images.com/ZZZZZZZZZZZ"

 }'

Responses

HTTP Code Response

200 Success. "Document uploaded successfully and is pending to process.

{

 "version": "1.0",
 "statusCode": 200,

 "message": "Document uploaded successfully and is pending to process. Track it's st

 "result": {
 "refDocUID": "XXXXXXXXX"

 }

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Project UID is either invalid or points to a non-existing or inactive project.

{
 "version": "1.0",

 "statusCode": 404,

 "message": "Project UID provided is either invalid or points to a non-existing or i

}

POST /api/v1/refdoc/add_url

Plain text URL is a kind of a reference document in the Approval Studio. You can either upload a file

or add a URL to the list of reference documents in a project.

This method adds a URL to the document list for a given project.

Curl:

curl -X POST "http://api.approval.studio/api/v1/refdoc/add_url"
 -H "accept: text/plain"

 -H "Authorization: Bearer YYYYYYYYYYYYYY"

 -H "Content-Type: application/json-patch+json"
 -d '{

 "projectUID": "XXXXXXXXX",

 "url": "https://cdn.images.com/ZZZZZZZZZZZ"
 }'

Responses

HTTP Code Response

200 Success. "Document uploaded successfully and is pending to process.

{
 "version": "1.0",

 "statusCode": 200,

 "message": "Reference document's URL added to the list.",
 "result": {

 "refDocUID": "XXXXXXXXX"

 }
}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Project UID is either invalid or points to a non-existing or inactive project.

{
 "version": "1.0",

 "statusCode": 404,

 "message": "Project UID provided is either invalid or points to a non-existing or i
}

GET /api/v1/refdoc/download

This method returns URL to download a given reference document.

If you need to download the document itself, please use any available suitable technology to do this

using provided URL.

Curl:

curl -X POST "http://api.approval.studio/api/v1/refdoc/download?refDocUID=XXXXXXXXX"

 -H "accept: text/plain"

 -H "Authorization: Bearer YYYYYYYYYYYYYY"

Responses

HTTP Code Response

200 Success. URL returned in the response JSON.

{

 "version": "1.0",
 "statusCode": 200,

 "message": "GET Request successful.",

 "result": {
 "downloadURL": "https://ZZZZZZZZZZ"

 }

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP
Code

Response

404
Error: Reference document UID is either invalid or points to a non-existing or

deleted document.

{

 "version": "1.0",
 "statusCode": 404,

 "message": "Reference document not found."

}

DELETE/api/v1/refdoc

This method deletes a reference document or reference URL.

Curl:

curl -X DELETE "http://api.approval.studio/api/v1/refdoc"

 -H "accept: text/plain"
 -H "Authorization: Bearer YYYYYYYYYYYYYY"

Responses

HTTP Code Response

200 Success. URL returned in the response JSON.

{
 "version": "1.0",

 "statusCode": 200,

 "message": "Document deleted."

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP
Code

Response

404
Error: Reference document UID is either invalid or points to a non-existing or

deleted document.

{

 "version": "1.0",
 "statusCode": 404,

 "message": "Reference document not found or it was already deleted."

}

Task management

Method/Path Description

GET​ /api​/v1​/task/all Gets a list of tasks assigned to the user.

GET​ /api​/v1​/task Gets a task instance.

DELETE​ /api​/v1​/task Deletes an task.

POST​ /api​/v1​/task/asset_upload Creates a new AssetUpload task.

POST​ /api​/v1​/task​/refdoc_upload Creates a new RefDocUpload task.

POST​ /api​/v1​/task​/review_asset Creates a new CreateReviewAsset task.

PUT ​/api​/v1​/task​/complete Completes a task.

GET​ /api​/v1​/task/all

Gets a list of tasks optionally filtered by task types, assigned to a currently logged-in user.

This is what a user sees in Approval Studio web application in the list of tasks in the dashboard.

Parameter Type & Explanation

Types string One or more task types, comma-separated.

Parameter Type & Explanation

Default value is UploadAssets, UploadRefDocs, ReviewAssets,
ExternalReviewAssets, UploadChangedAsset, UploadVideo,

ExternalReviewVideo, ReviewVideo , AssignUserRoles .

If no parameter is provided or it is empty, a default list of types is used (see

above).

Curl:

curl -X GET "http://api.approval.studio/api/v1/task/all?Types=UploadAssets"

 -H "accept: text/plain"

 -H "Authorization: Bearer YYYYYYYYYY"

Responses

HTTP Code Response

200 Success. Task instance returned.

{

 "version": "1.0",
 "statusCode": 200,

 "message": "GET Request successful.",

 "result": [
 {

 "taskUID": "XXXXXXXXXXX1",

 "projectUID": "YYYYYYYYYYYY1",
 "projectName": "Project name, string",

 "type": "UploadAssets|UploadRefDocs|ReviewAssets|ExternalReviewAssets|UploadC

 "status": "Pending|Closed|Approved|Rejected|ApprovedWithChanges",
 "created": "2020-11-27T15:39:59.864882",

 "closed": "2020-11-27T15:40:51.407384",

 "user": {

 "userUID": "92AFE33153124F0980E43EF80133FE9B",
 "fullName": "John Smith",

 "email": "john.smith@email.com"

 },
 "reviewUrl": string , // URL to launch prooftool for g

 // Appears only in ReviewAsset t

"requestedAssetName": "butterfly_poster.pdf" // Name of the asset, a task ref
 // Appears only in UploadChanged

},

 {
 "taskUID": "XXXXXXXXXXX2",

 "projectUID": "YYYYYYYYYYYY2",

 ...

 },
 ...

]

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

GET​ /api​/v1​/task

Gets a task instance for a given task id.

Parameter Type & Explanation

TaskUID string Unique task ID.

Curl:

curl -X GET "http://api.approval.studio/api/v1/task?TaskUID=XXXXXXXXXXXXXXXX"

 -H "accept: text/plain"
 -H "Authorization: Bearer YYYYYYYYYY"

Responses

HTTP Code Response

200 Success. Task instance returned.

{
"version": "1.0",

 "statusCode": 200,

 "message": "GET Request successful.",
 "result": {

 "taskUID": "XXXXXXXXXXX",

 "projectUID": "YYYYYYYYYYYY",
 "projectName": "string",

 "clientUID": "ZZZZZZZZZZZZ",

 "type": "UploadAssets|UploadRefDocs|ReviewAssets|ExternalReviewAssets|UploadChang
 "status": "Pending|Closed|Approved|Rejected|ApprovedWithChanges",

 "created": "2020-11-27T15:39:59.864882",

 "closed": "2020-11-27T15:40:51.407384",

 "user": {

 "userUID": "92AFE33153124F0980E43EF80133FE9B",
 "fullName": "John Smith",

 "email": "john.smith@email.com"

 },
 "reviewUrl": string, // URL to launch prooftool for given task.

 // Appears only for ReviewAsset task.

 "requestedAssetName": "filename.pdf" // Name of the asset, a task references to.

 // Appears only in UploadChangedAsset task.
 }

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Task with the given ID not found.

{

 "version": "1.0",
 "statusCode": 404,

 "message": "Task not found"

}

DELETE​ /api​/v1​/task

Deletes a task.

Request

Parameter Type & Explanation

taskUID string Unique task ID.

Curl:

curl -X DELETE "https://api.approval.studio/api/v1/task"

-H "accept: text/plain"
-H "Authorization: Bearer YYYYYYYYYYYYYYYYYYYYYYYYYY"

-H "Content-Type: application/json-patch+json"

-d "{\"taskUID\":\"XXXXXXXXXXX\"}"

Responses

HTTP Code Response

200 Success. Login successful, AUTH token provided.

{

 "version": "1.0",

 "statusCode": 200,
 "message": "Task deleted."

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Task with the given ID not found.

{

 "version": "1.0",

 "statusCode": 404,
 "message": "Task not found"

}

HTTP
Code

Response

410
Error: the task is already completed or deleted or approved/rejected. Only

pending task can be deleted.

{

 "version": "1.0",
 "statusCode": 410,

 "message": "The task is not pending and cannot be deleted."

}

POST​ /api​/v1​/task/asset_upload

Creates a new AssetUpload task for a given user providing optional due date and comment.

Request

{

 "projectUID": "XXXXXXXXXXXXXX", // Project this task belongs to, mandatory.

 "userUID": "ZZZZZZZZZZZZZ", // User this task assigned to, mandatory.
 "dueDate": "2020-12-04", // Task due date, UTC, optional.

 "comment": "comment text" // Comment text, optional.

}

Curl:

curl -X POST "https://api.approval.studio/api/v1/task/asset_upload" \

 -H "accept: text/plain" \

 -H "Authorization: Bearer YYYYYYYYYYYYYYYY" \
 -H "Content-Type: application/json-patch+json" \

 -d "{\"projectUID\":\"XXXXXXXXXXXXXXXX\",

 \"userUID\":\"ZZZZZZZZZZZZZ\",
 \"dueDate\":\"2020-12-04T13:11:11.526Z\",

 \"comment\":\"comment text\"}"

Responses

HTTP Code Response

200 Success. Task created.

{

 "version": "1.0",

 "statusCode": 200,
 "message": "Task created."

 "result": {

 "task": {
 "taskUID": "XXXXXXXXXXXXXXXXXXXXXX",

 "projectId": 981,

 "projectUID": "YYYYYYYYYYYYYYYYYYYYYYYYYYYY",
 "type": "UploadAssets",

 "status": "Pending",

 "comment": "Free-form text comment to the task",

 "dueDate": "2020-12-22",
 "created": "2020-12-22",

 "userUID": "ZZZZZZZZZZZZZ",

 "userName": "John Smith",
 "userEmail": "john.smith@gmail.com"

 }

 }
}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

|

HTTP Code Response

404 Error: Given project not found.

{
 "version": "1.0",

 "statusCode": 404,

 "message": "Given project not found."

}

HTTP
Code

Response

412
Error: You cannot create a task for a project in state [Complete]. Only projects that

are Active or OnHold can have tasks.

412 Error: User with UID [ZZZZZZZZZZZZZ] not found.

{

 "version": "1.0",
 "statusCode": 412,

 "message": "You cannot create a task for a project in state [Complete]."

}

POST​ /api​/v1​/task​/refdoc_upload

Creates a new RefDocUpload task for a given user providing optional due date and comment.

Request

{

 "projectUID": "XXXXXXXXXXXXXX", // Project this task belongs to, mandatory.

 "userUID": "ZZZZZZZZZZZZZ", // User this task assign to, mandatory.
 "dueDate": "2020-12-04", // Task due date, UTC, optional.

 "comment": "comment text" // Comment text, optional.

}

Curl:

curl -X POST "https://api.approval.studio/api/v1/task/refdoc_upload" \
 -H "accept: text/plain" \

 -H "Authorization: Bearer YYYYYYYYYYYYYYYY" \

 -H "Content-Type: application/json-patch+json" \
 -d "{\"projectUID\":\"XXXXXXXXXXXXXXXX\",

 \"userUID\":\"ZZZZZZZZZZZZZ\",

 \"dueDate\":\"2020-12-04\",

 \"comment\":\"comment text\" [...] }"

Responses

HTTP Code Response

200 Success. Task created.

{

 "version": "1.0",
 "statusCode": 200,

 "message": "Task created."

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Given project not found.

{

 "version": "1.0",
 "statusCode": 404,

 "message": "Given project not found."

 "result": {

 "task": {
 "taskUID": "XXXXXXXXXXXXXXXXXXXXXX",

 "projectId": 981,

 "projectUID": "YYYYYYYYYYYYYYYYYYYYYYYYYYYY",
 "type": "UploadRefDocs",

 "status": "Pending",

 "comment": "Free-form text comment to the task",
 "dueDate": "2020-12-22",

 "created": "2020-12-22",

 "userUID": "ZZZZZZZZZZZZZ",

 "userName": "John Smith",

 "userEmail": "john.smith@gmail.com"
 }

 }

}

HTTP
Code

Response

412
Error: You cannot create a task for a project in the state Complete . Only projects
that are Active or OnHold can have tasks.

412 Error: User with UID [ZZZZZZZZZZZZZ] not found.

{

 "version": "1.0",
 "statusCode": 412,

 "message": "You cannot create a task for a project in the state [Complete]."

}

POST​ /api​/v1​/task/review_asset

Creates a new Review Asset Task for a given user, project, and a list of assets providing optional

due date and comment.

Request

{

 "projectUID": "XXXXXXXXXXXXXX", // Project this task belongs to, mandatory.
 "userUID": "ZZZZZZZZZZZZZ", // User this task assign to, mandatory.

 "assetUIDs": [

 "AAAAAAAAAAAAAAAA1", // One or more assets to review, namdatory.
 "AAAAAAAAAAAAAAAA2"

],

 "dueDate": "2020-12-04", // Task due date, UTC, optional.
 "comment": "comment text" // Comment text, optional.

}

Curl:

curl -X POST "https://api.approval.studio/api/v1/task/review_asset" \
 -H "accept: text/plain" \

 -H "Authorization: Bearer YYYYYYYYYYYYYYYY" \

 -H "Content-Type: application/json-patch+json" \
 -d "{\"projectUID\":\"XXXXXXXXXXXXXXXX\",

 \"userUID\":\"ZZZZZZZZZZZZZ\",

 \"assetUIDs\":[\"AAAAAAAAAA1\", \"AAAAAAAAAA2\"],

 \"dueDate\":\"2020-12-04\",
 \"comment\":\"comment text\" [...]}"

Responses

HTTP Code Response

200 Success. Task created.

{
 "version": "1.0",

 "statusCode": 200,

 "message": "Task created.",
 "result": {

 "task": {

 "taskUID": "XXXXXXXXXXXXXXXXXXXXXX",
 "projectId": 981,

 "projectUID": "YYYYYYYYYYYYYYYYYYYYYYYYYYYY",

 "type": "ReviewAssets",

 "status": "Pending",
 "comment": "Free-form text comment to the task",

 "dueDate": "2020-12-22",

 "created": "2020-12-22",
 "userUID": "ZZZZZZZZZZZZZ",

 "userName": "John Smith",

 "userEmail": "john.smith@gmail.com"
 }

 }

}

HTTP
Code

Response

400 Error: Parameters’ validation failed.

Error: An asset [XXXXXXXXX] must be a valid UID that points to a successfully
processed asset.

See HTTP code 400 description.

HTTP
Code

Response

404 Error: Given project not found.

404 Error: Asset [AAAAAAAAAAAAAAAA1] not found…

HTTP
Code

Response

404
Error: Asset [AAAAAAAAAAAAAAAA1] does not belong to project

[XXXXXXXXXXXXXXXX].

{

 "version": "1.0",
 "statusCode": 404,

 "message": "Given project not found."

}

HTTP
Code

Response

412
Error: You cannot create a task for a project in the state [Complete]. Only projects

that are Active or OnHold can have tasks.

412 Error: User with UID [ZZZZZZZZZZZZZ] not found.

{

 "version": "1.0",

 "statusCode": 412,
 "message": "You cannot create a task for a project in the state [Complete]."

}

POST​ /api​/v1​/task/review_asset_ext

Creates a new External Review Asset Task for someone who doesn’t have an account in Approval
Studio.

The flow is the following:

1. When a task is created, an email is sent to an email address from the request.

2. Email contains a link (URL) to a proof report review session.

3. Approve or reject terminates the review task and makes the URL expire.

Request

{

 "projectUID": "XXXXXXXXXXXXXX", // Project this task belongs to, mandatory.

 "email": "string", // User's email, mandatory.
 "assetUIDs": [

 "AAAAAAAAAAAAAAAA1", // One or more assets to review, namdatory.

 "AAAAAAAAAAAAAAAA2"

],

 "dueDate": "2020-12-04", // Task due date, UTC, optional.
 "password": "string", // Optional password. When provided, the review

 // to enter it before the review session.

 "emailSubject": "string", // Custom email subject line; override template
 "emailLanguage": "English", // Email language, optional. English is default

 // English, German, French, Polish, Spanish, He

 "comment": "comment text" // Comment text, optional.

 "isAllowDownloadAssets": true, // When true, allows user to download original
 "isReadOnly": true // When true, makes a review session read-only:

 // no comments, no approve/reject. Optional.

}

Curl:

curl -X POST "https://api.approval.studio/api/v1/task/review_asset_ext" \

 -H "accept: text/plain" \
 -H "Authorization: Bearer YYYYYYYYYYYYYYYY" \

 -H "Content-Type: application/json-patch+json" \

 -d "{\"projectUID\":\"XXXXXXXXXXXXXXXX\",
 \"email\":\"ZZZZZZZZZZZZZ\",

 \"assetUIDs\":[\"AAAAAAAAAA1\", \"AAAAAAAAAA2\"],

 \"dueDate\":\"2020-12-04\",
 \"comment\":\"comment text\" [...]}"

Responses

HTTP Code Response

200 Success. Task created.

{
 "version": "1.0",

 "statusCode": 200,

 "message": "Task created.",
 "result": {

 "task": {

 "taskUID": "XXXXXXXXXXXXXXXXXXXXXX",

 "projectId": 981,
 "projectUID": "YYYYYYYYYYYYYYYYYYYYYYYYYYYY",

 "type": "ExternalReviewAssets",

 "status": "Pending",
 "comment": "Free-form text comment to the task",

 "dueDate": "2020-12-22",

 "created": "2020-12-22",
 "userUID": "ZZZZZZZZZZZZZ",

 "userName": "John Smith",

 "userEmail": "john.smith@gmail.com"

 }

 }
}

HTTP
Code

Response

400 Error: Parameters’ validation failed.

Error: An asset [XXXXXXXXX] must be a valid UID that points to a successfully

processed asset.

See HTTP code 400 description.

HTTP
Code

Response

404 Error: Given project not found.

404 Error: Asset [AAAAAAAAAAAAAAAA1] not found…

404
Error: Asset [AAAAAAAAAAAAAAAA1] does not belong to project

[XXXXXXXXXXXXXXXX].

{
 "version": "1.0",

 "statusCode": 404,

 "message": "Given project not found."
}

HTTP
Code

Response

412
Error: You cannot create a task for a project in the state [Complete]. Only projects
that are Active or OnHold can have tasks.

{

 "version": "1.0",

 "statusCode": 412,
 "message": "You cannot create a task for a project in the state [Complete]."

}

PUT ​/api​/v1​/task/complete

Completes a given task.

Note: AssignUserRoles task, related to workflow initialing, is processing in the following way:

If required data (internal and/or external users) is already provided, then task would be

completed.
If required data is not provided, then data->assignUsers group (see below) must be

provided to complete the task.

For example, a workflow is configured to a have two internal users, uploader and reviewer, and

two external ones. Then you need to have two users in the group data->assignUser-
>internalUsers :

["UploaderUserUID1"], <-- Uploader.

["ReviewerUserUID2"], <-- Reviewer.

You may also provide multiple UIDs for every user in the group:
`[“UploaderUserUID1”, “UploaderUserUID2”], <-- Uploaders

This method validates if all the required data provided, and if not, then HTTP code 412 would

be returned with an appropriate comment.

Request

{
 "taskUID": "XXXXXXXXXXXXXX" // Task id to complete.

 "data": {

 "assignUsers": { // AssignUser-task specific data.
 "internalUsers": [

 ["UserUID1", "UserUID2"...], <-- first internal users(s)

 ["UserUID3", "UserUID4"...], <-- second internal user(s)

 [...]
],

 "externallUsers": [

 ["email1@email.com", "email2@email.com"...],
 ["email3@email.com", "email4@email.com"...],

]

 }
 }

}

Curl:

curl -X POST "https://api.approval.studio/api/v1/task/complete" \

 -H "accept: text/plain" \

 -H "Authorization: Bearer YYYYYYYYYYYYYYYY" \
 -H "Content-Type: application/json-patch+json" \

 -d "{\"taskUID\":\"XXXXXXXXXXXXXXXX\", \"data\": {...}}"

Responses

HTTP Code Response

200 Success. Task marked as completed.

{
 "version": "1.0",

 "statusCode": 200,

 "message": "Task completed."
}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Given task not found.

{7
 "version": "1.0",

 "statusCode": 404,

 "message": "Task not found."

}

HTTP
Code

Response

410
Error: the task is already completed or deleted or approved/rejected. Only

pending tasks can be completed.

{

 "version": "1.0",

 "statusCode": 410,
 "message": "The task is not pending and cannot be completed."

}

HTTP
Code

Response

412 Error: Only upload-related tasks might be marked as completed:

Allowed task types: UploadAssets , UploadChangedAsset , UploadRefDocs ,

UploadVideo , AssignUserRoles

{
 "version": "1.0",

 "statusCode": 412,

 "message": "This type of task cannot be manually completed" |

 "This task can not be completed as provided list of users does not match
}

Annotations management

Method/Path Description

GET ​/api​/v1​/annotation/all Returns a list of annotations for a given asset .

GET ​/api​/v1​/annotation Returns an annotation.

POST ​/api​/v1​/annotation Creates a new annotation.

DELETE ​/api​/v1​/annotation Deletes an annotation.

PUT​ /api​/v1​/annotation​/hide Hides an annotation.

PUT ​/api​/v1​/annotation​/complete Completes an annotation.

PUT ​/api​/v1​/annotation​/uncomplete Un-completes an annotation.

GET ​/api​/v1​/annotation/all

Returns a list of annotations for a given asset and page.

Request

Parameter Type & Explanation

AssetUID string Unique project ID, mandatory.

PageNum int Page number, zero-based, mandatory.

curl -X GET "http://api.approval.studio/api/v1/annotation/all?AssetUID=XXXXXXXXXXXXXX
 -H "accept: text/plain" \

 -H "Authorization: Bearer YYYYYYYYYYYYYYYY"

Responses

HTTP Code Response

200 Success. Annotations returned and a hierarchy built.

{

 "version": "1.0",

 "statusCode": 200,
 "message": "GET Request successful.",

 "result": {

{
 "0": [// Key is the page number

 {

 "commentId": 0,
 "commentUID": "CCCCCCCCCCCCCC",

 "body": "Annotation body",

 "drawingCode": "XXXXXXXXXXXXX",
 "created": "2020-12-04T16:35:11.083Z",

 "pageNum": 0,

 "sequenceId": 0,
 "isCompleted": true,

 "replies": [

 { annotation instance 1}, // The same annotation instance,

 { annotation instance 2} [...] // tree-like annotation hierarchy
],

 "user": {

 "userUID": "ZZZZZZZZZZ",
 "fullName": "string",

 "email": "string"

 }
 }

],

 "1" : [...]
[...]

 }

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Asset with the given ID not found.

{
 "version": "1.0",

 "statusCode": 404,

 "message": "Asset not found."

}

GET ​/api​/v1​/annotation

Returns an annotation for a given annotation id.

Request

Parameter Type & Explanation

AnnotationUID string Unique annotation ID, mandatory.

curl -X GET "http://api.approval.studio/api/v1/annotation?AnnotationUID=XXXXXXXXXXXXX

 -H "accept: text/plain" \
 -H "Authorization: Bearer YYYYYYYYYYYYYYYY"

Responses

HTTP Code Response

200 Success. Annotations returned and a hierarchy built.

{
 "version": "1.0",

 "statusCode": 200,

 "message": "GET Request successful.",
 "result": {

 "commentUID": "XXXXXXXXXXXXXXXX",

 "body": "Annotation body",
 "drawingCode": "DDDDDDDDDDDD", // Simple json-based markup code.

 "created": "2020-12-04T16:35:11.083Z",

 "pageNum": 0,
 "sequenceId": 0,

 "isCompleted": true,

 "user": {
 "userUID": "ZZZZZZZZZZ",

 "fullName": "string",

 "email": "string"

 }

 }

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Annotation with the given ID not found.

{

 "version": "1.0",
 "statusCode": 404,

 "message": "Annotation not found."

}

POST ​/api​/v1​/annotation

Creates a new high-level comment for a given asset.

Request

Parameter Type & Explanation

assetUID string Unique asset ID.

pageNum int Zero-based page number.

body string Text of the annotation, a free-form text or safe html.

Curl:

curl -X 'POST' \

 'https://api.dev.lam.hitech.dev/api/v1/annotation' \

 -H 'accept: text/plain' \
 -H 'Content-Type: application/json-patch+json' \

 -d '{

 "assetUID": "XXXXXXXXXXXXXXXXXXXXXXXX",
 "pageNum": 0,

 "body": "Some text."

}'

Responses

HTTP Code Response

200 Success. Annotation created.

{

 "version": "1.0",

 "statusCode": 200,
 "message": "Annotation created."

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Asset with the given ID not found.

{

 "version": "1.0",

 "statusCode": 404,
 "message": "Asset not found."

}

DELETE ​/api​/v1​/annotation

Deletes an annotation for a given annotation id.

Request

Parameter Type & Explanation

annotationUID string Unique annotation ID.

Curl:

curl -X DELETE "https://api.approval.studio/api/v1/annotation"

-H "accept: text/plain"

-H "Authorization: Bearer YYYYYYYYYYYYYYYYYYYYYYYYYY"

-H "Content-Type: application/json-patch+json"

-d "{\"annotationUID\":\"XXXXXXXXXXX\"}"

Responses

HTTP Code Response

200 Success. Annotation deleted.

{

 "version": "1.0",
 "statusCode": 200,

 "message": "Annotation deleted."

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Annotation with the given ID not found.

{

 "version": "1.0",

 "statusCode": 404,
 "message": "Annotation not found."

}

HTTP
Code

Response

412
Error: Only the user that created the annotation or comment can delete it. You

cannot delete other’s users’ annotations and this annotation does not belong to you.

Deletion failed.

{

 "version": "1.0",

 "statusCode": 404,

 "message": "You can delete only your annotation."
}

PUT​ /api​/v1​/annotation​/hide

Hides an annotation for a given annotation id.

Request

Parameter Type & Explanation

taskUID string Unique annotation ID.

Curl:

curl -X PUT "https://api.approval.studio/api/v1/annotation/hide"

-H "accept: text/plain"

-H "Authorization: Bearer YYYYYYYYYYYYYYYYYYYYYYYYYY"
-H "Content-Type: application/json-patch+json"

-d "{\"annotationUID\":\"XXXXXXXXXXX\"}"

Responses

HTTP Code Response

200 Success. Annotation was hidden.

{

 "version": "1.0",

 "statusCode": 200,
 "message": "Annotation was hidden."

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

406 Error: A user can hide only their own annotation.

404 Error: Annotation with the given ID not found.

{
 "version": "1.0",

 "statusCode": 404,

 "message": "Annotation not found."
}

PUT ​/api​/v1​/annotation​/complete

Completes an annotation for a given annotation id.

Request

Parameter Type & Explanation

taskUID string Unique annotation ID.

Curl:

curl -X PUT "https://api.approval.studio/api/v1/annotation/complete"

-H "accept: text/plain"

-H "Authorization: Bearer YYYYYYYYYYYYYYYYYYYYYYYYYY"
-H "Content-Type: application/json-patch+json"

-d "{\"annotationUID\":\"XXXXXXXXXXX\"}"

Responses

HTTP Code Response

200 Success. Annotation was marked as completed.

{

 "version": "1.0",

 "statusCode": 200,

 "message": "Annotation was completed."
}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

404 Error: Annotation with the given ID not found.

406 Error: Annotation is already completed.

{
 "version": "1.0",

 "statusCode": 404,

 "message": "Annotation not found."

}

PUT ​/api​/v1​/annotation/uncomplete

Un-completes an annotation for a given annotation id.

Request

Parameter Type & Explanation

taskUID string Unique annotation ID.

Curl:

curl -X PUT "https://api.approval.studio/api/v1/annotation/uncomplete"
-H "accept: text/plain"

-H "Authorization: Bearer YYYYYYYYYYYYYYYYYYYYYYYYYY"

-H "Content-Type: application/json-patch+json"

-d "{\"annotationUID\":\"XXXXXXXXXXX\"}"

Responses

HTTP Code Response

200 Success. Annotation was marked as uncompleted.

{

 "version": "1.0",
 "statusCode": 200,

 "message": "Annotation was uncompleted."

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

404 Error: Annotation with the given ID not found.

406 Error: Annotation is already completed.

{
 "version": "1.0",

 "statusCode": 404,

 "message": "Annotation not found."

}

Users management

Method/Path Description

GET ​/api​/v1​/users Returns all clients(tenants) with users.

GET ​/api​/v1​/user/loggedin Returns currently logged in user user.

GET ​/api​/v1​/users

This method returns a list of available active users per tenant (client) and a template list for every

client.

Please read more about the concept of project templates in the project methods’ group.
Curl:

curl -X GET "https://api.approval.studio/api/v1/users"

 -H "accept: text/plain"
 -H "Authorization: Bearer YYYYYYYYYYYYYYYYYYYYYYYYYY"

Responses

HTTP Code Response

200 Success. List of users with companies they belong to returned.

{
 "version": "1.0",

 "statusCode": 200,

 "message": "GET Request successful.",
 "result": {

 "clients": [

 {

 "clientUID": "XXXXXXXXXXXXXXXXXXXX",
 "name": "HiTech Service",

 "users": [

 {
 "userUID": "UUUUUUUUUUUUUUUUUUU1",

 "fullName": "John Smith",

 "email": "john.smith@gmail.com",
 "role": "Administrator|RegularUser"

 },

 [...]

],
 "templates": [

 {

 "templateUID": "TTTTTTTTTTTTTTTTTTT",
 "name": "First template",

 "data": {

 "key": "value",
 "key1": "value1"

 }

 },
 [...]

],

 "kanbanColumns": [// List of kanban columns configured for the given client.
 {

 "name": "Active Projects",

 "kanbanColumnUID": "p8i41"

 },
 {

 "name": "In Production",

 "kanbanColumnUID": "d4df5a"
 }

],
 "folders": [

 {

 "folderUID": "#shared#",
 "name": ""

 },

 {
 "folderUID": "ib0t",

 "name": "10_04_2024_01"

 }

]
 },

 [...]

 }
}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

GET ​/api​/v1​/user/loggedin

This method returns a currently logged in user; this is the used that was used when creating an

authorization token in method POST /api/v1/token/login .

Curl:

curl -X GET "https://api.approval.studio/api/v1/users"

 -H "accept: text/plain"

 -H "Authorization: Bearer YYYYYYYYYYYYYYYYYYYYYYYYYY"

Responses

HTTP
Code

Response

200
Success. List of users with companies they belong to returned and a complete list

of clients including inactive ones.

{

 "version": "1.0",

 "statusCode": 200,
 "message": "GET Request successful.",

 "result": {

 "user": {
 "userUID": "XXXXXXXXXXXXXXXXXXXX",

 "fullName": "John Smith",

 "email": "john.smith@company.com",

 "role": "Administrator"
 },

 "clients": [

 {
 "clientUID": "YYYYYYYYYYYYYYYYYYYY",

 "name": "Client Name",

 "status": "Active|Inactive",
 "clientType": "Pro|Lite",

 "kanbanColumns": [

 {
 "kanbanColumnUID": "XYZ",

 "name": "Column One"

 },
 {

 "kanbanColumnUID": "ZYX",

 "name": "Column Two"

 }
]

 },

 ...

]
 }

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

Webhooks

Approval Studio API uses webhooks to notify your application when an event happens. Webhooks

are particularly useful for asynchronous events like when an asset is accepted or rejected or when a

new task is created or someone made a comment or a new asset version is uploaded etc.

Begin using the webhooks in three steps:

1. Create a webhook endpoint on your server.
2. Register the endpoint with Webhook management method POST ​/api​/v1​/webhook.

3. Test it to ensure that you can receive events using method PUT ​/api​/v1​/webhook/test.

Webhooks generally refer to a combination of elements that collectively create a notification and

reaction system within a larger integration.

The webhook endpoint is code on your server, which could be written in C#, Java, Ruby, PHP,
Node.js, or any other language/technology you prefer. The webhook endpoint has an associated

URL (e.g., https://example.com/webhook).

Note: Explanations on how to build an endpoint are out of the scope of this document.

The Approval Studio notifications are Event objects. Those event objects contain all the relevant
information about what just happened, including the type of event and the data associated with

that event. The webhook endpoint uses the event details to take any required actions.

https://example.com/webhook

Client API Endpoint Integration Host

1. Webhook setup.

POST ​/api​/v1​/webhookPOST ​/api​/v1​/webhook

SecretIDSecretID

Store SecretID in DB or config.Store SecretID in DB or config.

Webhook installed.

2. Event processing.

Event + SecretEvent + Secret

HTTP Code 200HTTP Code 200

Validate against stored Secret in 'Api-Secret' header.Validate against stored Secret in 'Api-Secret' header.

Validate uniqueness of EventID.Validate uniqueness of EventID.

Process integration flow.Process integration flow.

Business flow/sample.

Call API for retrieving objects etc...Call API for retrieving objects etc...

responses...responses...

Client API Endpoint Integration Host

Security

The API host provides a Secret ID with every event object posted on an endpoint. The endpoint

needs to check against this ID for every incoming post to avoid spamming. Keep secret id safe.

Retry logic

Webhook host implements a simple retry logic in order to try to deliver events in case of possible

troubles on the endpoint side
If the endpoint does not return HTTP code 200, the webhooks host starts retrying posting the

same event object up to ~30 minutes. After that time the event delivery silently fails.

Event object

An event object is a JSON document that API posts on a selected endpoint. It generally has the

following structure:

{
 "EventId":"DY3h1Pl040uIRvL74oKFlQ", // Unique event id.

 "EventType":"annotation.added", // Codename of the event, see below.

 "Created":"2021-02-18T14:08:08.615088Z", // UTC datetime when the event was gener
 "Data": { // Data block, event-type dependent.

 "SomeData": "XXXXXXXX"

 }
}

EventID is unique for every Event object. If for whatever reason, the API host makes more than one

post on your endproint with the same event object, you can identify it by reading EventID.

Event types are self-explanatory:

Event code Description

project.created Fires when a new project is created.

project.edited
Fires when a project’s attribute changes, like name, description, due

date, etc.

project.state Fires when project state changes.

asset.uploaded Fires when an asset or a new version of an existing asset is uploaded.

asset.deleted Fires when asset deleted.

refdoc.uploaded A new reference document uploaded.

refdoc.deleted An existing reference document is deleted.

annotation.added An annotation to asset is created.

annotation.edited An annotation is edited.

annotation.deleted An annotation is deleted.

Event code Description

task.created A new task of any type is created.

task.completed A task is marked as completed.

task.deleted A task is deleted.

task.approved An asset review task marked as approved.

task.rejected An asset review task marked as rejected.

webhook.test Dummy event object for the testing endpoint.

project.created

Fires when a new project is created.

{

 "EventId": "XppRxqUyNEqYrZtY9lRBdA",
 "EventType": "project.created",

 "Created": "2021-02-18T23:22:33.2944308Z",

 "Data": {
 "ProjectUID": "B0CADA6D72824F85A38BE8471503D204", // Unique ID of a newly cre

 "Name": "ProjectName plain text", // Project name.

 "Project": { // Here is a Project entity as it is

 // in the GET ​/api/v1/project method.
 [...]

 "ProjectUID": "XXXXXXXXXXXX",

 "ProjectState": "OnHold",
 "Name": "string",

 "Customer": "string",

 "Project": "string",
 "Design": "string",

 "Revision": "string",

 "Description": "string",
 "Tags": [

 "string",

 "string"
],

 "ReviewStatus": {

 "PendingCount": 1,

 "ApprovedCount": 2,
 "RejectedCount": 3

 },

 "Created": "2021-04-29T11:56:44.690266Z",
 "Owners": [

 "YYYYYYYYYYYY0",

 "YYYYYYYYYYYY1"

],

 "Client": {
 "ClientUID": "ZZZZZZZZZZZZ",

 "Name": "string"

 },
 "FolderUID": "string",

 "Workflow": {

 "WorkflowUID": "string",

 "Name": "string"
 }

 }

 }
}

project.edited

Fires when one of the project’s attributes is changed: Name , Customer , Project , Design ,

Revision , Description , Tags , DueDate , ProjectOwners .

 {

 "EventId":"xDPuRZ1F_Ea03fO-WPZqnQ",

 "EventType":"project.edited",
 "Created":"2021-02-18T23:47:17.7572002Z",

 "Data": {

 "ProjectUID":"XXXXXXXXXXXXXXXXXX", // Unique ID of a project w

 "Attribute":"Name", // Attribute name, see the
 "Value":"New project name", // New attribute value.

 "Project" : { // Here is a Project entity

 // in the GET ​/api/v1/proje
 [...]

 }

 }
}

project.state

Fires when the project’s state is changed, interactively or automatically by Approval Studio itself.

{

 "EventId": "xDPuRZ1F_Ea03fO-WPZqnQ",
 "EventType": "project.edited",

 "Created": "2021-02-18T23:47:17.7572002Z",

 "Data": {
 "ProjectUID": "XXXXXXXXXXXXXXXXXX", // Unique ID of a project where the chang

 "Attribute": "Name", // Attribute name, see the list above.

 "Value": "New project name", // New attribute value.
 "Project": { // Here is a Project entity as it is

 // in the GET ​/api/v1/project method.

 [...]
 }

 }

}

asset.uploaded

Fires when an asset (or an asset version) is uploaded and successfully processed. If asset processing
fails due to any possible reason, an event is not sent.

{

 "EventId": "inuBFhnHn0CUZ4u4OO-8Ww",
 "EventType": "asset.uploaded",

 "Created": "2021-02-19T12:57:53.9413529Z",

 "Data": {
 "ProjectUID": "XXXXXXXXXXXXXXXXXX",

 "AssetUID": "YYYYYYYYYYYYYYYYYY",

 "Name": "filename.png",
 "Project": { // Here is a Project entity as it is

 // in the GET ​/api/v1/project method.

 [...]
 }

 }

}

asset.deleted

Fires when an asset (or an asset version) is deleted.
Note: when an asset is deleted, all the related objects – tasks, comments, attachments – are

deleted as well, but you will not get separate webhook calls for them.

{
 "EventId": "__Z6LClFFkyxeEPeVx-ytQ",

 "EventType": "asset.deleted",

 "Created": "2021-02-19T13:12:39.2669051Z",

 "Data": {
 "ProjectUID": "XXXXXXXXXXXXXXXXXX",

 "AssetUID": "YYYYYYYYYYYYYYYYYY",

 "Project": { // Here is a Project entity as it is
 // in the GET ​/api/v1/project method.

 [...]

 }
 }

}

refdoc.uploaded

Fires when a reference document is uploaded and processed successfully.

{

 "EventId": "q2bwNSmAoUO0wXMVTyn7Cg",

 "EventType": "refdoc.uploaded",
 "Created": "2021-02-19T13:33:57.6370653Z",

 "Data": {

 "ProjectUID": "XXXXXXXXXXXXXXXXXX",
 "RefDocUID": "YYYYYYYYYYYYYYYYYY",

 "Name": "refdocument.docx",

 "Project": { // Here is a Project entity as it is
 // in the GET ​/api/v1/project method.

 [...]

 }

 }
}

refdoc.deleted

Fires when a reference document is deleted.

{
 "EventId": "AT4ShAVLN0Ck7kVhMHYzUw",

 "EventType": "refdoc.deleted",

 "Created": "2021-02-19T13:37:59.3381091Z",
 "Data": {

 "ProjectUID": "XXXXXXXXXXXXXXXXXX",

 "RefDocUID": "YYYYYYYYYYYYYYYYYY",
 "Project": { // Here is a Project entity as it is

 // in the GET ​/api/v1/project method.

 [...]

 }
 }

}

annotation.added

Fires when an annotation is added to an asset.
This can be a high-level annotation associated with the selected region on the image, or a comment

(to an annotation).

{

 "EventId": "Vx5S8r4os0K5WlwYFsYRhg",
 "EventType": "annotation.added",

 "Created": "2021-02-19T13:45:24.7158494Z",

 "Data": {
 "ProjectUID": "XXXXXXXXXXXXXXXXXX",

 "AnnotationUID": "YYYYYYYYYYYYYYYYYY",

 "AssetUID": "AAAAAAAAAAAAAAAAAAA",
 "Text": "Annotation text",

 "Project": { // Here is a Project entity as it is

 // in the GET ​/api/v1/project method.

 [...]
 }

 }

}

annotation.deleted

Fires when an annotation or comment to an annotation is deleted.

{

 "EventId": "HdBv5m13CEaZPBAr4E0AIw",
 "EventType": "annotation.deleted",

 "Created": "2021-02-19T14:51:23.9392566Z",

 "Data": {
 "ProjectUID": "XXXXXXXXXXXXXXXXXX",

 "AnnotationUID": "YYYYYYYYYYYYYYYYYY",

 "AssetUID": "AAAAAAAAAAAAAAAAAAA",

 "Project": { // Here is a Project entity as it is
 // in the GET ​/api/v1/project method.

 [...]

 }
 }

}

task.created

Fires when a task is created. Only a task ID is passed to an Event object.

{

 "EventId": "QbLNa0r3UkuLPJ3KZpoDNg",

 "EventType": "task.created",
 "Created": "2021-02-19T15:10:19.7757392Z",

 "Data": {

 "TaskUID": "XXXXXXXXXXXXXXXXXX",

 "Project": { // Here is a Project entity as it is
 // in the GET ​/api/v1/project method.

 [...]

 },
 "Task": { // Here is a Task entity as it is

 // in the GET /api/v1/task.

 "taskUID": "XXXXXXXXXXX",
 "projectUID": "YYYYYYYYYYYY",

 "projectName": "string",

 "clientUID": "ZZZZZZZZZZZZ",
 "type": "UploadAssets|UploadRefDocs|ReviewAssets|ExternalReviewAssets|Upl

 "status": "Pending|Closed|Approved|Rejected|ApprovedWithChanges",

 "created": "2020-11-27T15:39:59.864882",

 "closed": "2020-11-27T15:40:51.407384",
 "user": {

 "userUID": "92AFE33153124F0980E43EF80133FE9B",

 "fullName": "John Smith",
 "email": "john.smith@email.com"

 },

 "reviewUrl": string, // URL to launch prooftool for given task.
 // Appears only for ReviewAsset task.

 "requestedAssetName": "filename.pdf" // Name of the asset, a task referen

 // Appears only in UploadChangedAsset task.
 }

 }

}

task.deleted

Fires when a task is deleted, interactively, or through API.

{

 "EventId": "0Jd-zSoOKU2_PoG6zSb5uQ",

 "EventType": "task.deleted",
 "Created": "2021-02-19T15:20:58.5833087Z",

 "Data": {

 "TaskUID": "XXXXXXXXXXXXXXXXXX",
 "Project": { // Here is a Project entity as it is

 // in the GET ​/api/v1/project method.

 [...]
 },

 "Task": { // Here is a Task entity as it is

 // in the GET /api/v1/task.
 [...]

 }

 }

}

task.approved

Fires when an asset is approved in a proof tool or using API.

TaskUID is an ID of an asset review task associated with a proof tool session.

{
 "EventId": "0Jd-zSoOKU2_PoG6zSb5uQ",

 "EventType": "task.deleted",

 "Created": "2021-02-19T15:20:58.5833087Z",

 "Data": {
 "TaskUID": "XXXXXXXXXXXXXXXXXX",

 "Project": { // Here is a Project entity as it is

 // in the GET ​/api/v1/project method.
 [...]

 },

 "Task": { // Here is a Task entity as it is
 // in the GET /api/v1/task.

 [...]

 }
 }

}

task.rejected

Fires when an asset is rejected in a proof tool or using API.

TaskUID is an ID of an asset review task associated with a proof tool session.

{

 "EventId": "0Jd-zSoOKU2_PoG6zSb5uQ",

 "EventType": "task.deleted",
 "Created": "2021-02-19T15:20:58.5833087Z",

 "Data": {

 "TaskUID": "XXXXXXXXXXXXXXXXXX",
 "Project": { // Here is a Project entity as it is

 // in the GET ​/api/v1/project method.

 [...]
 },

 "Task": { // Here is a Task entity as it is

 // in the GET /api/v1/task.

 [...]
 }

 }

}

webhook.test

Fires when API method PUT ​/api​/v1​/webhook/test is invoked. It works like any other real event

including a secret UID in an HTTP header Api-Secret .

{
 "EventId": "0Jd-zSoOKU2_PoG6zSb5uQ",

 "EventType": "webhook.test",

 "Created": "2021-02-19T15:20:58.5833087Z",

 "Data": {
 "DummyData": "random string"

 }

}

Webhooks management

Method/Path Description

GET ​/api​/v1​/webhooks Returns all webhooks for the current user’s tenant.

POST ​/api​/v1​/webhook Sets us a new webhook.

DEL ​/api​/v1​/webhook Deletes a webhook.

PUT ​/api​/v1​/webhook/test Test a webhook endpoint.

GET ​/api​/v1​/webhooks

Returns all the installed webhooks.

Curl:

curl -X GET "https://api.approval.studio/api/v1/webhooks"

 -H "accept: text/plain"

 -H "Authorization: Bearer YYYYYYYYYYYYYYYYYYYYYYYYYY"

Responses

HTTP Code Response

200 Success. List of webhooks.

{

 "version": "1.0",
 "statusCode": 200,

 "message": "GET Request successful.",

 "result": [
 {

 "webhookUID": "XXXXXXXXXXXXXXXXXXXX01",

 "url": "http://xxxxx.com/part/of/url01",

 "secret": "YYYYYYYYYYYYYYYYYYYYY01", // This secret will be sent with eve

 "created": "2021-02-09T09:17:27.904911" // to ensure that this is API host i
 },

 {

 "webhookUID": "XXXXXXXXXXXXXXXXXXXX02",
 "url": "http://xxxxx.com/part/of/url02",

 "secret": "YYYYYYYYYYYYYYYYYYYYY02",

 "created": "2021-02-09T09:17:27.904911"

 }
]

}

POST ​/api​/v1​/webhook

Sets up a new webhook.
Request

{

 "url": "string", // Valid URL string, http or https.
 "clientUID": "string", // Client UID, optional.

 "eventType": "string" // One of the event type names, optional.

}

clientUID is an optional client identificator. Events are client-wide, so in the case of multitenancy,

when a user belongs to multiple clients, the events through webhooks are produced based on the

client you provided when creating a webhook. You need to install multiple webhooks to get events

from all tenants you belong to.
If no clientUID is provided, the first client in the list is used.

eventType is an optional event type, please see Event object When provided, it limits the webhook

to be invoked only when the given event type occurs. If it’s not provided, all events will be sent to

the webhook and in this case an API consumer is responsible for filtering events (when necessary).

Note: The API host might need up to ~1 minute to start processing a newly installed webhook.

Curl:

curl -X POST "https://api.approval.studio/api/v1/webhook"

 -H "accept: text/plain"
 -H "Authorization: Bearer YYYYYYYYYYYYYYYYYYYYYYYYYY"

 -H "Content-Type: application/json-patch+json"

 -d "{\"url\":\"http://xxxx.com/part/of/url\", \"clientUID\": \"XXXX\", \"eventTy

Responses

HTTP Code Response

200 Success. A newly created webhook instance returned.

{
 "version": "1.0",

 "statusCode": 200,

 "message": "POST Request successful.",
 "result": {

 "webhookUID": "XXXXXXXXXXXXXXXXXXXX01", // Newly assigned webhook ID.

 "url": "http://xxxx.com/part/of/url", // Url of the webhook, as in the reques
 "secret": "YYYYYYYYYYYYYYYYYYYYY01", // This secret will be sent with every

 "created": "2021-02-09T09:17:27.904911" // to ensure that this is API host is p

 // see HTTP response header "Api-Secret
 }

}

HTTP
Code

Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

412
Error: Webhook with the given URL is already registered for this tenant. API does

not allow to setup duplicates.

DELETE ​/api​/v1​/webhook

Deletes a webhook with the given ID.
Note that deletion of a webhook might need up to ~1 minute for API host to update.

Curl:

curl -X DELETE "https://api.approval.studio/api/v1/webhook"
 -H "accept: text/plain"

 -H "Authorization: Bearer YYYYYYYYYYYYYYYYYYYYYYYYYY"

 -H "Content-Type: application/json-patch+json"
 -d "{\"webHookUID\":\"XXXXXXXXXXXXXXXXXXXXXXX\"}"

Responses

HTTP Code Response

200 Success. Webhook with the given ID deleted.

{
 "version": "1.0",

 "statusCode": 200,

 "message": "Webhook is successfully deleted."
}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

404 Error: Webhook with the given ID not found or was already deleted.

PUT ​/api​/v1​/webhook/test

Test a webhook’s endpoint with dummy data in form of JSON:

{

"EventId":"0Jd-zSoOKU2_PoG6zSb5uQ",
"EventType":"webhook.test",

"Created":"2021-02-19T15:20:58.5833087Z",

"Data": {
"DummyData":"random string"

}

}

When posting test data, the API host uses the same retry logic as it is for real calls, i.e. tries to re-

deliver it in case of failure, so multiple calls are expected if the endpoint fails to accept the call

instantly.

Curl:

curl -X PUT "https://api.approval.studio/api/v1/webhook/test"

 -H "accept: text/plain"

 -H "Authorization: Bearer YYYYYYYYYYYYYYYYYYYYYYYYYY"
 -H "Content-Type: application/json-patch+json"

 -d "{\"webHookUID\":\"XXXXXXXXXXXXXXXXXXXXXXX\"}"

Responses

HTTP Code Response

200 Success. Webhook is tested, see your endpoint logs.

{
 "version": "1.0",

 "statusCode": 200,

 "message": "Webhook is tested, see your endpoint logs."
}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

404 Error: Webhook with the given ID not found.

Workflow Management

Introduction

Workflow in Approval Studio is a event-based subsystem that allows to automate business flow

based on users’ activities.

There are a predefined list of events that trigger one or other actions.

It is like this: you may configure the workflow to create task(s) when a new project created. Or send

assets to review when an asset is uploaded, and so on.

So in other words, workflow is a set of trigger <-> action pairs. Those actions are completely

independent on each other.

The whole workflow from the point of view of API is an array of actions and optional list of roles:

Actions:

[

 {

 "uid": "XXXX",
 "friendlyName": "string",

 "triggerType": "ProjectCreated|InternalUploadAssetsTaskCompleted|...",

 "reactionType": "CreateInternalUploadAssetsTask|CreateInternalUploadRefDocsTask

 [...]

 // Trigger-action - specific fields.
 },

 {

 "uid": "YYYY",
 "friendlyName": "string",

 "triggerType": "ProjectCreated|InternalUploadAssetsTaskCompleted|...",

 "reactionType": "CreateInternalUploadAssetsTask|CreateInternalUploadRefDocsTask

 [...]
 // Trigger-action - specific fields.

 },

 [...]
]

The complete action is the following:

{
 "uid": "string",

 "friendlyName": "string",

 "triggerType": TriggerType,
 "reactionType": ReactionType,

 "userUIDs": [

 "string"
],

 "roleUids": [

 "string"

],
 "triggerExecutorUid": "string",

 "triggerRoleUid": "string",

 "triggerEmails": "string",
 "triggerRoleIds": [

 "string"

],
 "emails": "string",

 "emailSubject": "string",

 "emailLanguage": "string",
 "password": "string",

 "comment": "string",

 "checklistName": "string",
 "checklistItems": [

 "string"

],

 "daysToDueDate": [1...N],
 "allowDownload": true|false,

 "isSimpleMode": true|false,

 "isCustomPayload": true|false,
 "webhookURL": "string",

 "webhookRequestType": "string",

 "webhookContentType": "string",
 "webhookHeaders": [

 {

 "additionalProp1": "string",
 "additionalProp2": "string",

 "additionalProp3": "string"

 }
],

 "webhookFields": [

 "string"

],
 "webhookCustomPayload": "string",

 "contacts": "string",

 "targetKanbanColumnUid": "string"
}

Roles:

[
 {

 "uid": "XXXX",

 "name": "Roole Name",
 "isInternal": true|false

 },

 {
 [...]

 }

]

Triggers

Triggers initiate actions.

Trigger Explanation

ProjectCreated
It triggers when a new project created and is fully

initialized. It is occurred only once during the

project’s lifecycle.

InternalUploadAssetsTaskCompleted
Triggers when Uploading Asset task is completed,

new asset or asset versions are uploaded and

processed.

InternalUploadRefDocsTaskCompleted
Triggers when Uploading Reference Document task
is completed.

InternalReviewTaskRejected
Triggers when asset review task is completed and

the review result is reject.

Trigger Explanation

InternalReviewTaskApproved
Triggers when asset review task is completed and
the review result is approve.

ExternalUploadAssetsTaskCompleted

Triggers when external (addressed to a user outside

your company) Uploading Asset task is completed,

new asset or asset versions are uploaded and
processed.

ExternalUploadRefDocsTaskCompleted
Triggers when external Uploading Reference

Document task is completed.

ExternalReviewTaskRejected
Triggers when external (addressed to a user outside

your company, usually using email) asset review task

is completed and the review result is reject.

ExternalReviewTaskApproved
Triggers when external (addressed to a user outside
your company, usually using email) asset review task

is completed and the review result is approve.

UserRolesAssigned The concept of this trigger is the following:

ManualTrigger

Actions

Action is what is the reaction to a trigger. Actions contain different number of fields to provide,
depends on the nature of the action.

Please see Workflow Fields to have a detailed set set fields to provides for every action.

Reaction Explanation

CreateInternalUploadAssetsTask Create a new asset uploading task.

CreateInternalUploadRefDocsTask Create a new reference document uploading task.

CreateExternalUploadAssetsTask
Create a new external (the task assignee is outside the

company) asset uploading task.

CreateExternalUploadRefDocsTask
Create a new external (the task assignee is outside the

company) reference document uploading task.

CreateInternalReviewTask Create a new asset review task.

Note: It can be used in conjunction with asset upload

Reaction Explanation

task, making a upload-review cycle until reach an asset

approve event.

CreateExternalReviewTask
Create a new asset review task (the task assignee is
outside the company).

SendAssetsByEmail
Sends links to the project’s asset(s) to a recipient’s

email(s) to download.

SendRefDocsByEmail
Sends links to the project’s reference documents to a
recipient’s email(s) to download.

CompleteProject

Marks the project as Complete (changes the project

status’). This ultimately ends the workflow processing. To
restart workflow you need manually, or using API, move

the project back to Active state.

SendDataWithWebhook

Makes an HTTP call to an external webhook. You may

use this action to provide some kind of automation
outside the scope of the Approval Studio. Think of it as

an custom workflow action implemented separately.

Note: This is not related to the API’s webhooks
described earlier in the documentation.

AssignUserRoles

This action is important to create an adaptive workflow.

Approval Studio does nto have a concept of roles. The

assigning role action allows to assign users to roles at
runtime instead of hardcoding them in the workflow

itself.

At design time, you may define one or more roles, like

“Uploader”, “Reviewer”, “External Reviewer” etc and ask

some user, usually project owner, to assign concrete

user to those roles.

This makes the workflows adaptable when you need to

assign different people to different projects.

SendCustomEmail
This action just send a email to one or more recipients.
Use it when you need to notify someone.

MoveInKanban
This action moves the project to a predefined Canban

column. This allows you to track visually the workflow
progress.

Reaction Explanation

SwitchToWorkflow
This allows to to switch currently running project to
another workflow.

Trigger-Reaction dependencies

Some actions make sense to particular triggers only.

For example, it makes no sense to create asset review task without any assets uploaded, or sending

reference documents not having any of them attached to a project.

Below is the list of dependencies between triggers and allowed actions:

Trigger Available reactions

ProjectCreated

AssignUserRoles ,
CreateInternalUploadAssetsTask ,

CreateInternalUploadRefDocsTask ,

CreateExternalUploadAssetsTask ,
CreateExternalUploadRefDocsTask ,

SendDataWithWebhook , SendCustomEmail ,

SwitchToWorkflow

UserRolesAssigned, ManualTrigger,

InternalUploadAssetsTaskCompleted,

InternalUploadRefDocsTaskCompleted,
ExternalUploadAssetsTaskCompleted,

ExternalUploadRefDocsTaskCompleted

AssignUserRoles , CreateInternalUploadAssetsTask ,
CreateInternalUploadRefDocsTask ,

CreateExternalUploadAssetsTask ,

CreateExternalUploadRefDocsTask ,

CreateInternalReviewTask ,
CreateExternalReviewTask , SendAssetsByEmail ,

SendRefDocsByEmail , CompleteProject ,

SendDataWithWebhook , SendCustomEmail ,
SwitchToWorkflow

InternalReviewTaskApproved,

InternalReviewTaskRejected,

ExternalReviewTaskRejected,
ExternalReviewTaskApproved

AssignUserRoles ,

CreateInternalUploadAssetsTask ,

CreateInternalUploadRefDocsTask ,
CreateExternalUploadAssetsTask ,

CreateExternalUploadRefDocsTask ,

CreateInternalReviewTask ,
CreateExternalReviewTask , SendAssetsByEmail ,

SendRefDocsByEmail , CompleteProject ,

Trigger Available reactions

SendDataWithWebhook , SendCustomEmail ,

SwitchToWorkflow

Roles

The concept of roles is the following: instead of hardcoding users in the actions, you may define

roles like “Designer”, “Reviewer”, “External Reviewer” etc and ask someone provide the concrete
persons before workflow starts.

That is done by – a). by assigning a “AssignUserRoles” task or, b). interactively by a project owner

who provides users for the roles in the project popup.

Note: there is always available a pre-defined role "projectOwners" . You may use it as a role UID

wherever you need it:

"roleUids": [

 "projectOwners", <-- predefined role UID.

 "xxxx",
 "yyyy"

]

Workflow fields

Common fields

Field Description

UID [Mandatory] A unique action identifier, string.

TriggerType [Mandatory] Trigger type, see Triggers.

ReactionType [Mandatory] reaction type, see Actions.

Comment
[Optional] A free-form text that associated with the action. An end-user will
see this comment on the UI and in the notifications like emails, WhatsUp

message or Slack message.

FriendlyName [Optional] Name of the workflow step (action).

Action-specific Fileds

Field Type Description

userUIDs string[]

Along with RoleUIDs presented with all task-based
actions. Provide here UID(s) of user(s) to have task

assigned to.

roleUids string[]
The same as roleUids except this is role’s UIDs, not

user’s.

triggerExecutorUid string

triggerRoleUid string

emailSubject string
A custom subject in the email to be sent for email-
related actions.

password string
An optional password in the asset review-related

actions.

comment string An optional comment in the task-related actions.

checklistName string
An optional checklist name in asset-review based

actions.

checklistItems string[]

A list of the checklist items that is assigned to asset

review task. Along with checklistName this filed
makes up the checklist.

daysToDueDate int

An optional parameter of any task-based activities,

that defines how many days an assignee has to do
the assigned task. The due date is calculated at the

moment of task created plus this number of days.

allowDownload boolean
When true allows review task assignee to

download assets original files.

isSimpleMode boolean

When true, the review task’s UI will be simplified to

contains only minimal set of controls like Zoom,

Pan, Accept/Reject.

isCustomPayload boolean

webhookURL string

webhookRequestType string

webhookContentType string

Field Type Description

webhookHeaders
key-

value}[]

webhookFields string[]

webhookCustomPayload string

contacts string

targetKanbanColumnUid string

Workflow fields per reactions

Reaction Fields

AssignUserRoles RoleUids, UserUids, daysToDueDate

CreateInternalUploadAssetsTask RoleUids, UserUids, DaysToDueDate

{
 "uid": "uqag",

 "comment": "comment",

 "roleUids": [
 "projectOwners"

],

 "userUids": [
 "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"

],

 "triggerType": "ProjectCreated",
 "friendlyName": "Upload Ref Docs",

 "reactionType": "CreateInternalUploadAssetsTask",

 "daysToDueDate": 3

 }

CreateInternalUploadRefDocsTask RoleUids, UserUids, DaysToDueDate

{

 "uid": "uqag",

 "comment": "comment",
 "roleUids": [

 "projectOwners"

],
 "userUids": [

 "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"

],

 "triggerType": "ProjectCreated",

 "friendlyName": "Upload Ref Docs",
 "reactionType": "CreateInternalUploadRefDocsTask",

 "daysToDueDate": 3

 }

CreateInternalUploadAssetsTask RoleUids, UserUids, DaysToDueDate

{

 "uid": "uqag",
 "comment": "comment",

 "roleUids": [

 "projectOwners"

],
 "userUids": [

 "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"

],
 "triggerType": "ProjectCreated",

 "friendlyName": "Upload Ref Docs",

 "reactionType": "CreateInternalUploadAssetsTask",
 "daysToDueDate": 3

 }

CreateExternalUploadAssetsTask
RoleUids, UserUids, DaysToDueDate, subject, contacts,

password,

{

 "uid": "uqag",

 "comment": "Comment",
 "subject": "Optional subject",

 "contacts": "email:email@email.com, email:email2@email.com",

 "password": "Optional password",
 "roleUids": [

 "projectOwners"

],

 "triggerType": "ProjectCreated",
 "friendlyName": "aaaq",

 "reactionType": "CreateExternalUploadAssetsTask",

 "daysToDueDate": 3
 }

CreateExternalUploadRefDocsTask
RoleUids, UserUids, webhookHeaders, Subject,

Contacts, Password

{
 "uid": "uqag",

 "comment": "Comment",

 "subject": "Optional subject",
 "contacts": "email:email@email.com, email:email2@email.com",

 "password": "Optional password",

 "roleUids": [
 "projectOwners"

],

 "triggerType": "ProjectCreated",

 "friendlyName": "aaaq",
 "reactionType": "CreateExternalUploadRefDocsTask",

 "daysToDueDate": 3

 }

SendDataWithWebhook
WebhookUrl, WebhookFields, IsCustomPayload,

WebhookContentType, WebhookRequestType,
WebhookCustomPayload

{

 "uid": "uqag",

 "webhookUrl": "https://url.com",
 "triggerType": "ProjectCreated",

 "friendlyName": "Send Data With Webhook",

 "reactionType": "SendDataWithWebhook",
 "webhookFields": [

 "projectUID",

 "projectState",

 "projectCreateDate",
 "projectDescription",

 "projectDueDate",

 "projectCustomer",
 "projectRevision",

 "projectTags",

 "projectOwnersUIDs",
 "projectAssetsUIDs",

 "projectAssetsThumbnails",

 "projectAssetsReviewStatus",
 "projectTemplateName",

 "projectWorkflowName",

 "projectName",
 "projectDesign",

 "projectProject",

 "projectOwnersNames",

 "projectAssetsNames",
 "projectAssetsURLs",

 "projectAssetsStatus",

 "projectTemplateUID",
 "projectWorkflowUID"

],

 "webhookHeaders": [
 {

 "name": "Header1",

 "value": "Value1"
 }

],

 "isCustomPayload": false,
 "webhookContentType": "application/json",

 "webhookRequestType": "POST|GET|PUT"

}

or

{

 "uid": "uqag",

 "webhookUrl": "url",
 "triggerType": "ProjectCreated",

 "friendlyName": "aaaq",

 "reactionType": "SendDataWithWebhook",
 "isCustomPayload": true,

 "webhookContentType": "application/json",

 "webhookRequestType": "POST",
 "webhookCustomPayload": "Any payload"

}

SendCustomEmail Contacts, RoleUids

{
 "uid": "uqag",

 "contacts": "email:address@mail.com",

 "roleUids": [
 "projectOwners"

],

 "triggerType": "ProjectCreated",

 "friendlyName": "Send Custom Email",
 "reactionType": "SendCustomEmail"

}

SwitchWorkflow TargetWorkflowUid

{
 "uid": "uqag",

 "triggerType": "ProjectCreated",

 "friendlyName": "Switch To Workflow",
 "reactionType": "SwitchToWorkflow",

 "targetWorkflowUid": "YYYYYYYYYYY"

}

CompleteProject -

{

 "uid": "uqag",
 "triggerType": "InternalReviewTaskRejected",

 "friendlyName": "aaaq",

 "reactionType": "CompleteProject"
}

SendRefDocsByEmail Contacts, DaysToDueDate

 {

 "uid": "uqag",
 "comment": "Comment xxxx",

 "contacts": "email:mailgmail.com",

 "roleUids": [
 "projectOwners"

],

 "triggerType": "InternalReviewTaskRejected",
 "friendlyName": "Send Reference Docs By Email",

 "reactionType": "SendRefDocsByEmail",

 "daysToDueDate": 3
 }

CreateInternalReviewTask
RoleUids, UserUids, ChecklistName, DaysToDueDate,

ChecklistItems, TriggerRoleUid

{
 "uid": "uqag",

 "comment": "Comment",

 "roleUids": [

 "projectOwners"
],

 "userUids": [

 "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
],

 "triggerType": "InternalReviewTaskRejected",

 "friendlyName": "aaaqa",
 "reactionType": "CreateInternalReviewTask",

 "checklistName": "CH",

 "daysToDueDate": 3,
 "checklistItems": [

 "A1",

 "A2"
],

 "triggerRoleUid": "projectOwners"

}

CreateExternalReviewTask
Comment, Subject, Contacts, Language, Password,

IsSimpleMode, AllowDownload, DaysToDueDate

{
 "uid": "yi59",

 "comment": "Custom task comment",

 "subject": "Custom subject",
 "contacts": "email:oleg.gladun@hitech-ua.com",

 "language": "en",

 "password": "SecurePassword",

 "triggerType": "InternalReviewTaskRejected",
 "isSimpleMode": true,

 "reactionType": "CreateExternalReviewTask",

 "allowDownload": true,
 "daysToDueDate": 3,

 "triggerExecutorUid": "F84D43FF0BAE469595F695C1D3CAA9FC" or "triggerRoleUid": "pro

}

Workflow management

Method/Path Description

GET ​/api​/v1​/workflows Returns all webhooks for the current user’s tenant.

GET ​/api​/v1​/workflows Returns all webhooks for the current user’s tenant.

POST ​/api​/v1​/workflow Sets us a new webhook.

DEL ​/api​/v1​/workflow Deletes a webhook.

PUT ​/api​/v1​/webhook/test Test a webhook endpoint.

GET /api/v1/workflows

Returns list of the all workflows available.

Request URL

https://api.approval.studio/api/v1/workflows

Curl:

curl -X 'GET' 'http://localhost:8000/api/v1/workflows'

Response:

{

"workflows": [
 {

 "workflowUID": "XXXX",

 "name": "string",

 "created": "2025-12-20T18:39:10.913Z"
 },

 {...}

]
}

GET /api/v1/workflow

Returns a complete workflow object instance by a given workflow UID.

Request URL

https://api.approval.studio/api/v1/workflow?WorkflowUID=XXXXXXX

Curl:

curl -X 'GET' 'http://localhost:8000/api/v1/workflows'

Result:

{

 "actions": [// List of actions.

 {
 "uid": "string",

 "friendlyName": "string",

 "triggerType": TriggerType,

 "reactionType": ReactionType,
 "userUIDs": [

 "string"

]
 "roleUids": [

 "string"

],
 "triggerExecutorUid": "string",

 "triggerRoleUid": "string",

 "triggerEmails": "string",

 "triggerRoleIds": [
 "string"

],

 "emailSubject": "string",
 "emailLanguage": "string",

 "password": "string",

 "comment": "string",

 "checklistName": "string",
 "checklistItems": [

 "string"

],
 "daysToDueDate": 0,

 "allowDownload": true|false,

 "isSimpleMode": true|false,
 "isCustomPayload": true|false,

 "webhookURL": "string",

 "webhookRequestType": "string",
 "webhookContentType": "string",

 "webhookHeaders": [

 {
 "Header": "Value",

 [...]

 }

],
 "webhookFields": [

 "string"

]
 "webhookCustomPayload": "string",

 "contacts": "string",

 "targetKanbanColumnUid": "string"
 }

],

 "roles": [// List of roles.
 {

 "uid": "XXXX",

 "name": "string",
 "isInternal": true|false

 }

]

 }
}

Responses

HTTP Code Response

200 Success. List of workflows.

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

404 Error: A requested workflow not found, workflowUID parameter is invalid.

POST /api/v1/workflow

Creates a new active workflow.

Curl:

```bash
curl -X 'POST' \

  'http://localhost:8000/api/v1/workflow' \

  -H 'accept: text/plain' \
  -H 'Content-Type: application/json-patch+json' \

  -d '{

  "clientUID": "XXXXXXXXX", // Client UID that this workflow will be belong to.
  "name": "Name",           // Optioanl workflow name.

  "actions": [              // List of actions.

    {
        ...

    },

    [...]

  ],
  "roles": [                // Optional list of roles. 

    {

      ...
    }

  ]

}'

Result:

{

    "workflowUID": "XXXXXX",
    "name": "Name",

    "created": "2025-12-20T20:06:21.703Z",

    "actions": [ // List of actions.
      {

        ...

      }

    ],
    "roles": [ // List of roles.

      {



        ...

      }
    ]

  }

}

Responses

HTTP
Code

Response

200 Success. List of workflows.

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

412
Error: ClientUID  parameter is invalid, no active client with the given ID found

for this user.

PUT /api/v1/workflow

Updates (edits) a given workflow.

Curl:

curl -X 'PUT' \

  'http://localhost:8000/api/v1/workflow' \

  -H 'accept: text/plain' \
  -H 'Content-Type: application/json-patch+json' \

  -d '{

  "name": "Name",           // Optioanl workflow name.
  "actions": [              // List of actions.

    {

        ...
    },

    [...]

  ],
  "roles": [                // Optional list of roles. 

    {

      ...

    }
  ]

}'

Result:



{
    "workflowUID": "XXXXXX",

    "name": "Name",

    "created": "2025-12-20T20:06:21.703Z",

    "actions": [ // List of actions.
      {

        ...

      }
    ],

    "roles": [ // List of roles.

      {
        ...

      }

    ]
  }

}

Responses

HTTP Code Response

200 Success. List of workflows.

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

404 Error: A requested workflow not found, workflowUID  parameter is invalid.

DELETE /api/v1/workflow

Deletes (marks as deleted) a given workflow.
Curl:

curl -X 'DELETE' \

  'http://localhost:8000/api/v1/workflow' \

  -H 'accept: text/plain' \
  -H 'Content-Type: application/json-patch+json' \

  -d '{

  "workflowUID": "string"
}'

Responses



HTTP Code Response

200 Success. List of workflows.

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

404 Error: A requested workflow not found, workflowUID  parameter is invalid.


