
API Reference

2025, © Approval Studio, v. 1.32

Please find the most recent API Reference online here.

Table of contents

API Reference

Table of contents

General

Approval Studio basic concepts
REST HTTP Codes

Authorization/authentication

Token management
POST ​/api​/v1​/token​/login

GET ​/api​/v1​/token​/validate

Project management

GET ​/api/v1/project
POST /api/v1/project

PUT​ /api​/v1​/project

DELETE ​/api​/v1​/project
GET​ /api​/v1​/project​/proofreport

PUT​ /api​/v1​/project​/state

GET​ /api​/v1​/project​/meta

POST​ /api​/v1​/project​/meta
PUT​ /api​/v1​/project​/meta

https://approval.studio/api/view-documentation

DELETE​ /api​/v1​/project​/meta

GET​ /api​/v1​/project​/meta/projects
POST​ /api​/v1​/project/kanban/column

POST​ /api​/v1​/project/folder

Asset management

GET​ /api​/v1​/asset
DELETE​ /api​/v1​/asset

POST ​/api​/v1​/asset/upload

POST ​/api​/v1​/asset/upload_url
GET​ /api​/v1​/asset/download

GET​ /api​/v1​/asset​/proofreport

Reference documents management

POST /api/v1/refdoc/upload
POST /api/v1/refdoc/upload_url

POST /api/v1/refdoc/add_url

GET /api/v1/refdoc/download

DELETE/api/v1/refdoc
Task management

GET​ /api​/v1​/task/all

GET​ /api​/v1​/task
DELETE​ /api​/v1​/task

POST​ /api​/v1​/task/asset_upload

POST​ /api​/v1​/task​/refdoc_upload

POST​ /api​/v1​/task/review_asset
POST​ /api​/v1​/task/review_asset_ext

PUT ​/api​/v1​/task/complete

Annotations management
GET ​/api​/v1​/annotation/all

GET ​/api​/v1​/annotation

DELETE ​/api​/v1​/annotation

PUT​ /api​/v1​/annotation​/hide
PUT ​/api​/v1​/annotation​/complete

PUT ​/api​/v1​/annotation/uncomplete

Users management
GET ​/api​/v1​/users

GET ​/api​/v1​/user/loggedin

Webhooks

Security
Retry logic

Event object

Webhooks management
GET ​/api​/v1​/webhooks

POST ​/api​/v1​/webhook

DELETE ​/api​/v1​/webhook

PUT ​/api​/v1​/webhook/test

General

This is a REST API to the Approval Studio, design review, and packaging approval SAAS.

API utilizes its flow, authorization, storage, and so on.

Approval Studio basic concepts

From the business point of view, Approval Studio is based on a multitenant concept when a

single user may be a part of one or more tenants (called Companies). Please see

https://approvalstudio.freshdesk.com/ for detailed instructions on how to work with Approval
Studio.

Currently the only point where you may choose a tenant is project creation, please see POST

/api/v1/project / Request.

https://approval.studio/
https://approvalstudio.freshdesk.com/

Company

Users

Projects

Assets Tasks ReferenceDocuments

Annotations

REST HTTP Codes

API may return one of the following HTTP codes:

HTTP
Code

Response

200 Success. See the method description to get what and how the method returns.

400

Validation error. API validates input parameters and when finds an invalid
parameter, throws HTTP code 400. Those errors are related to parameters’

presence, format, emptiness, etc. Validating against a database, like looking for

data by an ID is conducted separately and reflected in case of error, in HTTP

codes 404, 406, 412, etc., please see the method’s description for detailed
explanations.

{

 "errors": {
 "parameterName": [

 "'parameterName' must not be empty."

]

 },
 "type": "https://tools.ietf.org/html/rfc7231#section-6.5.1",

 "title": "One or more validation errors occurred.",

 "status": 400,
 "traceId": "|a4a45224-4a7c03bbd5172369."

}

HTTP
Code

Response

404,

406,

412

Resource not found. Generally, it means that requested resources are either

not found or somehow restricted to proceed. For example, if a given project id

is non-existent, the project is not found so gets HTTP code 404.

429

Rate Limit Reached. API host calculates the number of calls per sec, minute,
and hour, and when the rate of requests reaches the limit, throws HTTP code

429, which means that the API host is overloaded and the client needs to wait

before retrying.

If the request gets blocked then the client receives a text response like this:

Status Code: 429

Retry-After: 58

Content: API calls quota exceeded! maximum admitted 2 per 1m.

Retry-After header value is expressed in seconds. And X-Rate-Limit-XXX HTTP headers

are injected in the response:

X-Rate-Limit-Limit: the rate limit period (eg. 1m, 12h, 1d)
X-Rate-Limit-Remaining: number of requests remaining

X-Rate-Limit-Reset: UTC date-time (ISO 8601) when the limits reset

HTTP
Code

Response

500

Infrastructure failure. This means critical unrecoverable technical error

generally related to database connections, external services availability,

hardware failure, etc. Depending on the client application flow you can retry the

calling method or halt processing and call our technical support.

Authorization/authentication

The API is based on an authorization token which should be requested prior to using any

available API methods.

The flow is the following: request auth token by calling POST​/api​/v1​/token​/login (see)
providing Approval Studio’s username/password. If ok, the method returns an authorization

token that you should provide with any other API call as an HTTP header like this:

Authorization: Bearer XXXXXXXXXXX .

The token is valid for a limited amount of time, 600 minutes by default. When the token is
expired and still used you will have the response HTTP code 401, Unauthorized :

{

 "isError": true,
 "type": "https://httpstatuses.com/401",

 "title": "Unauthorized",

 "status": 401,

 "instance": "/api/v1/annotation"
}

If so, you need to obtain a new token.
If the token is invalid or not provided, it gets the same response HTTP code 401.

Client POST​ token​/login Business method

POST
​/api​/v1​/token​/login

Email/PasswordEmail/Password

HTTP 200 + TokenHTTP 200 + Token

Authorization ok.

HTTP 404 Auth failed.HTTP 404 Auth failed.

Authorization failed.

Here you could use
API's methods

providing the token
with every call.

GET / POST/
PUT / DELETE
v1/api/xxxxx

Token + RequestToken + Request

Validates token.

Token valid, business data - {json}Token valid, business data - {json}

Token invalid, HTTP 401Token invalid, HTTP 401

Client POST​ token​/login Business method

Token management

POST ​/api​/v1​/token​/login

 

Authorizes a user. When successfully authorized is returns an authorization token which

must be supplied to every API as a header, like "Authorization: Bearer
YYYYYYYYYYYYYYYYY..." .

Request

{

 "userName": "john.smith@gmail.com",

 "password": "Q@fG%^18_A",
 "keepAliveTime": 12 // Optional, minutes.

}

keepAliveTime is an optional parameter that defines how much time the token will be valid.
Response’s expirationDate provides an exact time of the token expiration (see below).

Note: When keepAliveTime is zero, the default value is used (600 min/10 hours).

Curl:

curl -X POST "https://api.approval.studio/api/v1/token/login" \
 -H "accept: text/plain" \

 -H "Content-Type: application/json-patch+json" \

 -d "{\"userName\":\"joshn.smith@pepsico.com\",\"password\":\"Q@fG%^18_A~\",

Responses

HTTP Code Response

200 Success. Login successful, AUTH token provided.

{

 "version": "1.0",
 "statusCode": 200,

 "message": "POST Request successful.",

 "result": {
 "token": "eyJhbGciOiJIUzI1NiIsI[...]", // This is the auth token.

 "status": "Success",

"expirationDate": "2022-02-15T18:42:15.8398451Z", // A date/time when th

 "user": {
 "userUID": "XXXXXXXXXXXXXXXXXXXXXXXXXXX",

 "fullName": "John Smith",

 

 "email": "john.smith@gmail.com",

 "role": "RegularUser|Administrator"
 }

 }

}

HTTP
Code

Response

400 Error: Parameters’ validation failed. See HTTP code 400 description.

404
Error: User with given email and password not found. Either the provided
credentials are wrong or the user is locked and not able to login anymore.

{

 "version": "1.0",

 "statusCode": 404,
 "message": "Authorization failed.",

 "result": {

 "status": "WrongCredentials"
 }

}

HTTP
Code

Response

412
Error: The user uses Lite payment plan option. API is available only for Pro
users. Please consult our support on this: https://approval.studio/contact/

GET ​/api​/v1​/token​/validate

Validates an auth token. This method is an kind of a health checker, that validates an

authentication token, if it’s still valid. You may use it to ensure that the your authentication
process completed successfully or that the token is still valid in case of a long-running

scenarious like external workflow engines where tokens are saved for further use.

Request

Curl:

https://approval.studio/contact/

curl -X 'GET' \
 'http://localhost:8000/api/v1/token/validate' \

 -H "accept: text/plain" \

 -H "Content-Type: application/json-patch+json" \

Responses

HTTP Code Response

200 Success. authentication token provided in the Auth header is valid.

{

 "version": "1.0",

 "statusCode": 200,
 "message": "POST Request successful.",

 "result": {}

}

HTTP Code Response

401 Error: Parameters’ validation failed.

Project management

Project attributes:

Name Explanation

projectUID r/o System-wide unique project identifier, GUID

projectState
Projects are in one of the following states:

Active,OnHold,Completed,InTransit,Archived .

name
Free-form project name, string, max-length 50 chars,

mandatory.

customer Project’s customer name, max-length 50 chars, optional.

Name Explanation

project
Business project or product name this Approval Studio project
related for, max-length 50 chars, optional.

design
Point to which type of design this is, max-length 50 chars,

optional.

revision
Ideally, a sequential number or version number; generally a
free form string max-length 50 chars, optional.

description
Any kind of additional information, descriptions, comment

etc., max-length 200 chars, optional.

tags
Array of free-form single-word tags associated with the

project, optional, max 20 elements of 20-chars tags.

dueDate
Optional date, UTC, that points to when the project is desired

to be completed.

reviewStatus r/o
pendingCount - count of non-completed review tasks

assigned on the project

approvedCount - count of approves made on the project’s

assets

rejectedCount - count of rejected made on the project’s

assets

created r/o Refers to when the project was created, UTC.

templateUID

It is a new concept, introduced in API v.1.15.

Project template is a set of some data, usually a JSON, that

administrator can provide when creating a new project. That

could be a list of users, emails, etc any other business-specific
attributes that could be used in building a business flow and

should be specific for every project.

For example, you might need to create a review task just after
the project creation and you use API to implement this. In

that case, you may provide UID of a user to create a review

task for. The template itself doesn’t make any changes in the

default application flow, it’s just a customizable attribute.

Name Explanation

kanbanColumnUID
It is an unique ID of the Kanban column this project is placed
to on the dashboard.

folderUID
It is an unique ID of the folder this project is placed to on the

dashboard.

Note: Kanban columns and folders are ways to group projects based on some your business

needs, probably, based on a kind of state or position on flow. This is out of scope of this
document.

Method/Path Description

GET ​/api/v1/project Gets a list of projects.

POST /api/v1/project Creates new project.

PUT​ /api/v1/project Edits existing project.

DELETE​ /api/v1/project Deletes a project.

GET ​/api/v1/project/proofreport Gets a link to a proof report for a project.

PUT​ /api/v1/project/state Changes project’s state.

GET ​/api/v1/project

Returns one or more projects and projects’ assets, tasks, and reference documents –

depending on the parameters passed.

All the parameters are optional; the method always uses AND combination of all the

parameters.

Parameter Type & Explanation

ProjectUID string Unique project UID or comma-separated list of project

UIDs.

Note: behavior is changed in v.1.15.

Now if ProjectUID is provided and this project belongs to an

 

Parameter Type & Explanation

appropriate client, you will get project data regardless of the

owner list and whether you are an admin or not. In other words,

if this project belongs to your client (tenant), you will get it.
Note: validation changes in v.1.29.

If multiple projects UIDs provided, the result will contain only

those projects that are found. Wrong, deleted etc will be

silently omitted.

States

string One or more project states, comma-separated, see

ProjectStates above. Default value is

Active,OnHold,Completed .

Query

string A free-form text to case-sensitive search in projects’

attributes: Project name , Customer , Project , Design ,

Revision , Description , Tags .

IsLoadAssets
boolean , false by default. If it is set, returns assets for every
project as a child collection.

IsLoadLastVerAssets
boolean , true by default. If set, only the most recent version of

every asset be returned. Ignored, if IsLoadAssets is not set.

IsLoadTasks
boolean , false by default. If set, a list of active tasks for every

project would be returned as a child collection.

IsLoadRefDocs

boolean , false by default. If set, a list of uploaded reference

documents for every project would be returned as a child
collection.

IsLoadMetadata
boolean , false by default. If set, metadata for every project

would be returned as a list of key-value entries.

Request URL

https://api.approval.studio/api/v1/project?ProjectUID=XXXXX&

States=Active%2COnHold%2CCompleted%2CArchived%2CInTransit&Query=Some%20Free%20Te

IsLoadAssets=true&IsLoadLastVerAssets=true&IsLoadTasks=true&IsLoadRefDocs=true

Curl:

 

curl -X GET "https://api.approval.studio/api/v1/project?
 ProjectUID=XXXXXXXXXXXXXXXXXXX&States=Active%2COnHold%2

 Query=Some%20Free%20Text&IsLoadAssets=true&

 IsLoadLastVerAssets=true&IsLoadTasks=true&IsLoadRefDocs

-H "accept: text/plain" \
-H "Authorization: Bearer YYYYYYYYYYYYY"

Default States is Active,OnHold,Completed .

If ProjectUID is provided and no project is found, an empty list returns an HTTP code
200.

Response

[

 {

 "projectUID": "GUID",
 "projectState": "Active|OnHold|Completed|InTransit|Archived",

 "name": "string",

 "customer": "string",
 "project": "string",

 "design": "string",

 "revision": "string",
 "description": "string",

 "tags": [

 "tag 1", "tag 2"...
],

 "dueDate": "2020-11-22T23:00:53.425Z",

 "reviewStatus": { // Project-level proof review status
 // (see proofing flow explanations).

 "pendingCount": 1, // The asset has 1 uncompleted rev

 "approvedCount": 2, // The asset has been approved 2 t

 "rejectedCount": 3 // The asset has been rejected 3 t
 },

 "created": "2020-11-22T23:00:53.425Z",

 "template": {
 "templateUID": "XXXXXXXXXXXXXXX",// Template's unique ID.

 "name": "string", // Template name, presumable unique for

 "data": { // Optional data, associated with the p
 "key": "value", // Json or free-form string.

 "key1": "value1"

 }
 }

 "assets": { // Optional,

 "asset_one.jpeg": // Unique asset name

 [// List of assets' versions, one or more
 {

 "assetUID": "GUID",

 "version": 0,
 "status": "Pending|Processed|Failed", // Or integer, 0,1,2

 "reviewStatus": { // Proof review status (

 "pendingCount": 1, // The asset has 1 uncomplet

 "approvedCount": 2, // The asset has been approv
 "rejectedCount": 3 // The asset has been reject

 },

 "pagesCount": int, >=1,
 "created": "2020-11-22T23:00:53.425Z",

 "fileSize": int, bytes,

 "reviewUrl": string, // URL to a prooftool to view/pr
 "thumbnailUrl": string // URL to asset's thumnail image

 "fullSizeBitmapUrl": string // URL to converted asset's imag

 }
],

 "asset_two.pdf": [

 {
 "assetUID": "GUID",

 "version": 0,

 "status": "Pending|Processed|Failed",

 "reviewStatus": {
 "pendingCount": 1,

 "approvedCount": 2,

 "rejectedCount": 3
 },

 "pagesCount": 0,

 "created": "2020-11-22T23:00:53.425Z",
 "fileSize": 0,

 "reviewUrl": "https://app.approval.studio/xxx",

 "thumbnailUrl": "https://app.approval.studio/yyy"
 "fullSizeBitmapUrl": "https://app.approval.studio/zzz"

 }

],
 ...

]

 },

 "tasks": [
 {

 "taskUID": "GUID",

 "type": "UploadAssets|UploadRefDocs|ReviewAssets|ExternalReviewAssets|Up
 "status": "Pending|Closed|Approved|Rejected",

 "comment": "string",

 "dueDate": "2020-11-22T23:00:53.425Z", // Optional.

 "created": "2020-11-22T23:00:53.425Z",
 "closed": "2020-11-22T23:00:53.425Z",

 "user": {

 "userUID": "GUID",
 "fullName": "string",

 "email": "string"

 },

 "assets": [
 "Asset GUID", "Asset GUID 2"...

],

 "reviewUrl": string // URL to launch a prooftool for t
 // Appears only for the ReviewAsse

 }

],
 "refDocs": [

 {

 "refDocGUID": "GUID",
 "created": "2020-11-22T23:00:53.425Z",

 "name": "filename.ext",

 "fileSize": int, bytes.
 }

],

 "metadata": [

 "orderNumber": "A19KQ64A", // Key-Value pair(s) of metadat
 "contectEmail": "contact@mail.com"

],

 "client": {
 "clientUID": "YYYYYYYYYYYY", // Client's uniquie ID.

 "name": "Yourcompany Ltd" // Client name.

 },
 "kanbanColumnUID": "j2ax", // Optional kanban column UID for th

 "folderUID": "dv5t", // Optional folder UID for this proj

 "workflow": {
 "workflowUID": "WWWWWWWW", // Optional workflow UID.

 "name": "Primary Workflow" // Optional workflow's name.

 }
 }

]

POST /api/v1/project

Creates a new project taking mandatory project name and a list of owners and a set of

optional attributes.

Request

Field Type & Explanation

clientUID

string[50] Optional client UID. See GET ​/api​/v1​/users /

Responses. If no client ID is provided, the first client will be

chosen by default.

projectName string[200] Mandatory project name, free-form text.

customer string[200] Optional customer name.

project string[50] Optional (sub)project name.

design
string[50] Optional design type/name, like “package” or “banner”
etc.

revision string[50] Optional revision number, sequential or free-form.

description string[1000] Optional project description, free-form text.

tags
string array Optional tag list, max 20 tags of max length of 25
chars each.

dueDate

ISO date Optional UTC date (or date-time) that point to a date

when project supposed to be completed. The date affects the
project’s status and sort order on the application dashboard.

projectOwnersUIDS
string array Mandatory list of the project owner(s)'s UIDs. At

least one owner must be provided, max number of owners is 20.

 {
 "clientUID": "string", // Optional tenant(client) ID.

 "projectName": "string", // Project name, mandatory.

 "customer": "string",

 "project": "string",
 "design": "string",

 "revision": "string",

 "description": "string",
 "tags": [

 

 

 "string", "string"

],
 "dueDate": "2020-12-07T20:56:38.818Z",

 "projectOwnersUIDS": [// Project owner(s), at least one owner must be

 "XXXXXXXX"
],

 "templateUID": "string" // Optional project template UID. See client lis

 "folderUID": "string" // Optional folder UID. See client list to get a

 }

curl -X POST "https://api.approval.studio/api/v1/project"
 -H "accept: text/plain"

 -H "Authorization: Bearer YYYYYYYY"

 -H "Content-Type: application/json-patch+json"

 -d "{\"projectName\":\"string\",\"customer\":\"string\",\"project\":\"s

Responses

HTTP Code Response

200 Project created and instance returned.

 {

 "projectUID": "string",
 "projectState": 0,

 "name": "string",

 "customer": "string",
 "project": "string",

 "design": "string",

 "revision": "string",
 "description": "string",

 "tags": [

 "string"
],

 "dueDate": "2020-11-27T13:37:07.534Z",

 "created": "2020-11-27T13:37:07.534Z",
 "template": {

 "templateUID": "string",

 "name": "string",

 "data": "string or object"
 },

 "client": {

 "clientUID": "string",
 "name": "string"

 },

 "kanbanColumnUID": "string",
 "folderUID": "string,

 "workflow": {

 "workflowUID": "string",

 "name": "string"
 }

 }

HTTP Code Response

400 Error: Bad Request. One of the pre-requisites failed to validate

PUT​ /api​/v1​/project

Changes project’s attribute(s) including name, due date, and list of owners (edit project).

Request

{

 "projectUID": "ProjectUID", // ID of project to edit

 "projectName": "string",
 "customer": "string",

 "project": "string",

 "design": "string",
 "revision": "string",

 "description": "string",

 "tags": [
 "string", "string", "string"

],

 "dueDate": "2020-12-02",
 "projectOwnersUIDS": [

 "UserUID","UserUID" ...

],
 "folderUID": "string"

 }

Omit those properties you want to stay untouched; so if you provide a request like this below,

only the project name will be updated:

{

"projectUID": "XXXXXXXXXX", // Project ID to edit

"projectName": "New name"
}

Curl:

curl -X PUT "http://api.approval.studio/api/v1/project"

 -H "accept: text/plain"
 -H "Authorization: Bearer YYYYYYYYYYYYYYYYY..."

 -H "Content-Type: application/json"

 -d "{\"projectUID\":\"XXXXXXXXXXX\",\"projectName\":\"New Name\"}"

Responses

HTTP Code Response

200 Success. The project’s attributes changed.

{

 "projectUID": "XXXXXXXXXX",
 "projectState": "Active|OnHold|Completed|InTransit|Archived",

 "name": "string",

 "customer": "string",
 "project": "string",

 "design": "string",

 "revision": "string",
 "description": "string",

 "tags": [

 "string", "string", ...
],

 "dueDate": "2020-11-30",

 "created": "2020-11-30T12:09:36.426Z",

 "kanbanColumnUID": "string",
 "folderUID": "string,

 "workflow": {

 "workflowUID": "string",
 "name": "string"

 }

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Project with the given ID not found or it has been already deleted.

Error: Folder with the given UID not available for this project.

Error: Project owner with the UID [XXXXXXXXXX] not available.

{
 "version": "1.0",

 "statusCode": 404,

 "message": "Project not found or already deleted."
}

HTTP
Code

Response

406
Error: Project editing is possible only when the project is Active or OnHold .
Completed , Archived or InTransit projects are not mutable. Please see

PUT​ /api​/v1​/project​/state.

{

 "version": "1.0",
 "statusCode": 406,

 "message": "Can't edit completed or archived projects."

}

HTTP
Code

Response

412
Error: Project must be in state Completed or Archived. If not, the code 412

returns.

{
 "version": "1.0",

 "statusCode": 412,

 "message": "Only archived or on-hold project can be deleted."

}

DELETE ​/api​/v1​/project

Deletes a project.

This is undoable; once the project is deleted, it disappears from a list of projects; assets and

uploaded reference documents are deleted as well.

The project should have the status Completed or Archived to be deleted; an error will be

thrown elsewhere,

Request

{

 "projectUID": "XXXXXXXXXXXX"

}

Curl:

curl -X DELETE "https://api.approval.studio/api/v1/project" \

 -H "accept: text/plain" \
 -H "Authorization: Bearer YYYYYYYYYYYYYYYYY..." \

 -H "Content-Type: application/json" \

 -d "{\"projectUID\":\"XXXXXXXXXXXXXX\"}"

Responses

HTTP Code Response

200 Success. Project deleted.

{

 "version": "1.0",

 "statusCode": 200,

 "message": "Project deleted."
}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP
Code

Response

404
Error: Project with the given ID not found, and, therefore project deletion
failed.

{

 "version": "1.0",

 "statusCode": 404,
 "message": "Project not found."

}

HTTP Code Response

412 Error: Project must be either Completed or Archived to be deleted.

GET​ /api​/v1​/project​/proofreport

Returns URL to get a printable proof report for the given project. The method does not allow
direct downloading.

Read result/downloadURL and navigate it to get the report body. The report is a plain single-

layer PDF 1.4 file.

Request

The request is a set of URL GET parameters separated by &:

curl -X GET "https://api.approval.studio/api/v1/project/proofreport?ProjectUID=X

 -H "accept: text/plain" \

 

 

 -H "Authorization: Bearer YYYYYY"

Parameter Type & Explanation

ProjectUID string[50] Mandatory project identifier.

Responses

HTTP Code Response

200 Success. Proof report URL generated.

{

 "version": "1.0",
 "statusCode": 200,

 "message": "GET Request successful.",

 "result": {
 "downloadURL": "https://approval.studio/ProofApi/GetProofReport/DDDDDDDDDDDD

 "project": {

 "projectUID": "3AB3A5F58951467B975378198C7265D1",

 "projectState": "Complete",
 "name": "Project for Pepsi Co",

 "tags": ["tag1", "tag2"],

 "created": "2020-12-02T13:57:15.568992"
 }

 }

}

HTTP
Code

Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

--

HTTP
Code

Response

404
Error: Project with the given ID not found and therefore proof report

generation failed.

{

 "version": "1.0",
 "statusCode": 404,

 "message": "Project not found."

}

PUT​ /api​/v1​/project​/state

Changes project’s state according to the state rules:

InTransit

Active

OnHold

Complete

Archived

The diagram above explains the pre-requisite check for changing the project’s state.

Note: The diagram above is a recommended way to change project’s state, it is not
mandatory to follow it, but highly recommended.

Note: Detailed description of the project management is out of scope of this document.

States

Those are the states:

State Explanation

Active
Work on a project is undergoing. This is where all the review work is going

on.

State Explanation

OnHold

Due to some reason you want to postpone working on a project. Setting
state to OnHold moves the project to a separate lane. Tasks are still intact,

the only difference from Active is a position on a separate lane on the

dashboard.

Completed

When setting the state to Completed all project tasks are deleted and the
project itself moves from the dashboard to a separate screen where all

completes are stored separately. All the assets and reference documents are

preserved as well as history etc. The project goes read-only.

Archived

This is generally the same as Completed but assets and reference

documents are moved to a remote, slow storage. The process of moving

files to other storage could take a while, so when it is going on, the system

marks a project as InTransit (see below).

InTransit
Project is locked to InTransit state by API itself when it is switching to

Archive state or, vice versa, from Archived to Active. You can’t set this

state forcedly.

Request

{
 "projectUID": "XXXXXXXXXXX",

 "projectState": "Active|OnHold|Completed|Archived"

}

Responses

HTTP Code Response

200 Success. The project’s state changed.

{

 "projectUID": "XXXXXXXXXX",
 "projectState": "Active|OnHold|Completed|Archived",

 "name": "string",

 "customer": "string",
 "project": "string",

 "design": "string",

 "revision": "string",
 "description": "string",

 "tags": [

 "string", "string", ...
],

 "dueDate": "2020-11-30",

 "created": "2020-11-30T12:09:36.426Z"

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Project with the given ID not found or it has been already deleted.

{

 "version": "1.0",
 "statusCode": 404,

 "message": "Project not found."

}

HTTP
Code

Response

406
Error: The project with the given ID already has the requested state; no

updating made.

{
 "version": "1.0",

 "statusCode": 412,

 "message": "Project already has state XXXX."
}

GET /api/v1/project/meta

This methods gets a key-value list of the metadata for the given project.

 

 

The concept of project’s metadata is the following: you can assign any kind of textual invisible

for end-users data to a chosen project. Technically this is a list of key-value pairs.
Project’s metadata might be used to provide data necessary for integration with other

software, like order number, linked with a project, email of contact person etc.

Note: Apart from this method, you may use GET ​/api/v1/project with flag IsLoadMetadata

set to true .

Curl:

curl -X 'GET' \

 'https://api.approval.studio/api/v1/project/meta?ProjectUID=XXXXXXXXXXXXXXXXXX

 -H 'accept: text/plain'
 -H 'Authorization: Bearer ZZZZZZZZZZZZZZZZZZZZZZ'

Parameter Type & Explanation

ProjectUID string Unique project identifier.

Responses

HTTP Code Response

200 Success. List of metadata entries returned.

{

 "version": "1.0",

 "statusCode": 200,
 "message": "GET Request successful.",

 "result": { // Metadata group

 "orderNumber": "A19KQ64A", // Key-Value pair(s) of metadata
 "contectEmail": "contact@username.com"

 }

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Project with the given ID not found.

{
 "version": "1.0",

 "statusCode": 404,

 "message": "Project not found."
}

POST /api/v1/project/meta

This methods adds one or more metadata entry to the given project.

Request:

{

 "projectUID": "D37683CE23E24079951DC48C96114094",

 "metadata": {

 "orderNumber": "A19KQ64A",
 "contectEmail": "contact@username.com"

 }

}

Curl:

curl -X 'POST' \

 'https://api.approval.studio/api/v1/project/meta' \
 -H 'accept: text/plain' \

 -H 'Authorization: Bearer YYYYYYYY' \

 -H 'Content-Type: application/json-patch+json' \
 -d '{

 "projectUID": "D37683CE23E24079951DC48C96114094",

 "metadata": {
 "orderNumber": "A19KQ64A",

 "contectEmail": "contact@username.com"

 }

}'

Responses

HTTP Code Response

200 Success. Metadata added successfully.

{
 "version": "1.0",

 "statusCode": 200,

 "message": "Metadata added."
}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Project with the given ID not found.

{
 "version": "1.0",

 "statusCode": 404,

 "message": "Project not found."

}

HTTP
Code

Response

406
Error: Completed and archived projects can’t be altered. You can add

metadata to only project with statuses Active or OnHold .

PUT /api/v1/project/meta

This methods edits an existing metadata entry of the given project.
Request:

{

 "projectUID": "XXXXXXXXXXXXXX",
 "key": "orderNumber",

 "value": "A19KQ64A"

}

Curl:

curl -X 'PUT' \

 'https://api.approval.studio/api/v1/project/meta' \
 -H 'accept: text/plain' \

 -H 'Authorization: Bearer YYYYYYYY' \

 -H 'Content-Type: application/json-patch+json' \

 -d '{
 "projectUID": "XXXXXXXXXXXXXX",

 "key": "orderNumber",

 "value": "A19KQ64A"
}'

Responses

HTTP Code Response

200 Success. Metadata changed successfully.

{
 "version": "1.0",

 "statusCode": 200,

 "message": "Metadata edited."
}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Project with the given ID not found.

{
 "version": "1.0",

 "statusCode": 404,

 "message": "Project not found."

}

HTTP
Code

Response

406
Error: Completed and archived projects can’t be altered. You can add

metadata to only project with statuses Active or OnHold .

DELETE /api/v1/project/meta

This methods deleted an existing metadata entry of the given project.
Request:

{

“projectUID”: “XXXXXXXXXXXXXX”,

“key”: “orderNumber”
}

Curl:

curl -X 'DELETE' \
 'https://api.approval.studio/api/v1/project/meta' \

 -H 'accept: text/plain' \

 -H 'Authorization: Bearer YYYYYYYY' \
 -H 'Content-Type: application/json-patch+json' \

 -d '{

 "projectUID": "XXXXXXXXXXXXXX",
 "key": "orderNumber"

}'

Responses

HTTP Code Response

200 Success. Metadata entry deleted successfully.

{

 "version": "1.0",

 "statusCode": 200,

 

 "message": "Metadata deleted."

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Project with the given ID not found.

{

 "version": "1.0",

 "statusCode": 404,
 "message": "Project not found."

}

HTTP
Code

Response

406
Error: Completed and archived projects can’t be altered. You can add

metadata to only project with statuses Active or OnHold .

GET /api/v1/project/meta/projects

This methods gets one or more projects that contain metadata with the given key and optional

value.

Curl:

curl -X 'GET' \

 'https://api.approval.studio/api/v1/project/meta/projects?Key=orderNumber&Valu

 -H 'accept: text/plain' \
 -H 'Authorization: Bearer YYYYYYYY'

Responses

HTTP Code Response

200 Success. Search successful. Actually, zero or more projects found.

{
 "version": "1.0",

 "statusCode": 200,

 "message": "GET Request successful.",
 "result": [

 {

 "projectUID": "XXXXXXXXXXXXX",
 "projectState": "Active",

 "name": "Integratiion Design",

 "tags": [
 "Design"

],

 "reviewStatus": {
 "pendingCount": 5,

 "approvedCount": 4,

 "rejectedCount": 0

 },
 "created": "2022-10-17T16:30:14.971521",

 "owners": [

 "DDDDDDDDDDDDDD"
],

 "client": {

 "clientUID": "CCCCCCCCCCCCCC",
 "name": "Enterprize Company"

 },

 "metadata": [
 "orderNumber": "A19KQ64A",

 "contectEmail": "contact@mail.com"

]
 },

 [...]

]

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

POST /api/v1/project/kanban/column

This methods moves a given project to a given kanban column on the dashboard.

Curl:

curl -X 'POST' \
 'https://api.approval.studio/api/v1/project/kanban/column' \

 -H 'accept: text/plain' \

 -H 'Content-Type: application/json-patch+json' \
 -d '{

 "projectUID": "XXXXXXXXXX", // ProjectUID as is throughout the system.

 "kanbanColumnUID": "asdFxQ" // A valid kanban column UID.
}'

Note: You may retrieve a list of Kanban column UIDs from the GET ​/api​/v1​/users method.

HTTP
Code

Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

404 Error: Project with the given UID not found.

404 Error: Kanban column with the given UID not available for this project.

Please read kanban column UIDs using the GET ​/api​/v1​/users method

406 Error: Can’t edit completed or archived projects.

You may move a project to a given kanban column only when this project is
active or on hold.

POST /api/v1/project/folder

This methods moves a given project to a given folder on the dashboard.

Curl:

curl -X 'POST' \
 'https://api.approval.studio/api/v1/project/folder' \

 -H 'accept: text/plain' \

 -H 'Content-Type: application/json-patch+json' \

 -d '{
 "projectUID": "XXXXXXXXXX", // ProjectUID as is throughout the system.

 "folderUID": "49lu" // A valid folder UID.

}'

Note: You may retrieve a list of folder UIDs from the GET ​/api​/v1​/users method.

HTTP
Code

Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

404 Error: Project with the given UID not found.

404 Error: Kanban column with the given UID not available for this project.

Please read kanban column UIDs using the GET ​/api​/v1​/users method

406 Error: Can’t edit completed or archived projects.

You may move a project to a given folder only when this project is active or

on hold.

Asset management

Method/Path Description

GET​ /api​/v1​/assets Gets an asset instance.

DELETE​ /api​/v1​/assets Deletes an asset.

POST ​/api​/v1​/assets​/upload Uploads an asset from file.

POST ​/api​/v1​/assets​/upload_url Uploads an asset from the Internet.

 

Method/Path Description

GET​ /api​/v1​/assets​/download Downloads an asset.

GET​ /api​/v1​/assets​/proofreport Gets a link to a proof report for an asset.

GET​ /api​/v1​/asset

Gets an asset instance by a given asset id.

Parameter Type & Explanation

AssetUID string Unique asset GUID.

Curl:

curl -X GET "http://api.approval.studio/api/v1/asset?AssetUID=XXXXXXX" -H "accep

Responses

HTTP Code Response

200 Success. Asset instance returned.

 "version": "1.0",

 "statusCode": 200,
 "message": "GET Request successful.",

 "result": {

 "assetUID": "xxxxxxxxxx",
 "version": 1,

 "name": "drawing.pdf",

 "status": "Processed",
 "reviewStatus": { // Proof review status (se

 "pendingCount": 1, // The asset has 1 uncompl

 "approvedCount": 2, // The asset has been appr

 "rejectedCount": 3 // The asset has been reje
 },

 "pagesCount": 3,

 "created": "2020-10-22T08:09:05.778512",

 

 "fileSize": 1063800,

 "reviewUrl": "https://app.approval.studio/xxx", // URL to launch prooftool
 "thumbnailUrl": "https://app.approval.studio/yyy" // URL to asset's thumbnai

 "fullSizeBitmapUrl": "https://app.approval.studio/zzz/pageNum" // URL to con

 }
}

Note: fullSizeBitmapUrl is provided in form "https://baseurl/assettoken/0" .

– “0” here is a zero-based page number, zero is used by default, but you can change it to

whatever you need.
Please remember that some image asset formats are multipage (.pdf, .tiff, office formats etc.).

– You will get http code 404 if provide wrong page number, bigger than asset’s page count or

if you provide negative value.

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Asset with the given ID not found.

{

 "version": "1.0",

 "statusCode": 404,
 "message": "Asset not found."

}

DELETE​ /api​/v1​/asset

Deletes an asset by a given asset id.

Asset deletion is an unrecoverable operation that leads to removing the asset from the project
and deleting a file from storage.

It is no way to restore an asset after it has been deleted.

Request

{
 "AssetUID": "XXXXXXXXXXXX"

}

Curl:

curl -X DELETE "https://api.approval.studio/api/v1/asset" \
 -H "accept: text/plain" \

 -H "Authorization: Bearer YYYYYYYYYY" \

 -H "Content-Type: application/json-patch+json" \
 -d "{\"assetUID\":\"XXXXXXXXXXXX\"}"

Responses

HTTP Code Response

200 Success. Asset deleted.

{
 "version": "1.0",

 "statusCode": 200,

 "message": "Asset deleted."
}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Asset with the given ID not found.

{

 "version": "1.0",
 "statusCode": 404,

 "message": "Asset not found."

}

POST ​/api​/v1​/asset/upload

 

Uploads an asset and initiates asset processing.

It validates initial input and adds the asset to the asset processing queue, which runs

asynchronously. After uploading you need to pool asset status to get to know when it is
processed or failed to process.

You can upload assets directly to a selected project or point an upload task as an upload

initiator.

Time required to process assets is highly dependent on asset file size, dimensions,
number of pages, and on how much processing node(s) are loaded.

Asset processing may fail or be rejected due to a number of reasons, business and

technical. Those could be asset type (file extension), resolution or physical size (in case

of vector images - PDF/AI, etc), payment plan, and a number of other options. Please
refer to the company’s site or/and support to learn more.

Request

Parameter Type & Explanation

ProjectUID string Unique project ID, mandatory.

FileName form file Asset file name, mandatory. Note: It’s just a name, not a path.

Curl:

curl -X POST "http://api.approval.studio/api/v1/asset/upload?ProjectUID=XXXXXXXX

 -H "accept: text/plain"

 -H "Authorization: Bearer YYYYYYYYYYYYYY"
 -H "Content-Type: multipart/form-data"

 -F "uploadedFile=assetfilename.jpg;type=image/jpeg"

Responses

HTTP Code Response

200 Success. "Asset uploaded successfully and is pending to process.

 

{
 "version": "1.0",

 "statusCode": 200,

 "message": "Asset uploaded successfully and is pending to process.

 Track its status to catch when it is ready to use.",
 "result": {

 "assetUID": "AAAAAAAAAAAAAAAAA" // newly generated asset id.

 }
}

HTTP
Code

Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

403
Error: You have reached the storage limit for your plan (XXX Gb) and therefore

not allowed to upload new assets.

This code means you have no free storage space to upload a new asset; asset is

not uploaded and will not be processed any further. Please buy more storage

or contact support to assist in dealing with this.

404
Error: Project UID is either invalid or points to a non-existing or inactive
project.

404 Error: Task UID is either invalid or points to a non-existing or inactive task.

{

 "version": "1.0",
 "statusCode": 404,

 "message": "Project UID provided is either invalid or points to a non-existing

 "Task UID provided is either invalid or points to a non-existing or
}

HTTP Code Response

412
Error: Only task types UploadAssets and UploadChangedAsset are

allowed.

 

HTTP Code Response

412
Error: In case when it is UploadChangedAsset task: the file to upload must
be the same type as the original file.

Note: UploadChangedAsset means that the project owner(s) requested a

new version of the asset to upload. It is mandatory that all asset versions

must be the same type, i.e. all versions of the same asset are PDF or JPEG
or PNG, etc. If you provide a different file type, you get this error.

{

 "version": "1.0",

 "statusCode": 412,
 "message": "Only task types UploadAssets and UploadChangedAsset are allowed."

 "File to upload must be the same type as the original file (.pdf)."

}

POST ​/api​/v1​/asset/upload_url

This method works, generally, in the same way as /api​/v1​/asset/upload with the only

difference that the file to upload is taken from the publicly accessible http(s) server.

A mandatory URL parameter points to the file to upload and process as a project’s asset.

Request

Parameter Type & Explanation

ProjectUID string Unique project ID, mandatory.

FileName

form file Asset file name, optional. Note: It’s just a name, not a path. If not

provided, the filename would be assigned automatically using filename

taken form http header Content-Disposition . If this header is not

provided, filename would be "asset.extension" where extension is taken
from http content type.

URL string URL to download a file from, mandatory.

 

Curl:

curl -X POST "http://api.approval.studio/api/v1/asset/upload_url"
 -H "accept: text/plain"

 -H "Authorization: Bearer YYYYYYYYYYYYYY"

 -H "Content-Type: application/json-patch+json"
 -d '{

 "projectUID": "XXXXXXXXX",

 "fileName": "filename.jpeg",

 "url": "https://cdn.images.com/ZZZZZZZZZZZ"
 }'

Responses

HTTP Code Response

200 Success. "Asset uploaded successfully and is pending to process.

{
 "version": "1.0",

 "statusCode": 200,

 "message": "Asset uploaded successfully and is pending to process. Track it's
 "result": {

 "assetUID": "XXXXXXXXX"

 }
}

HTTP
Code

Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

403
Error: You have reached the storage limit for your plan (XXX Gb) and therefore

not allowed to upload new assets.

This code means you have no free storage space to upload a new asset; asset is

not uploaded and will not be processed any further. Please buy more storage

or contact support to assist in dealing with this.

 

 

HTTP
Code

Response

404
Error: Project UID is either invalid or points to a non-existing or inactive

project.

{

 "version": "1.0",
 "statusCode": 404,

 "message": "Project UID provided is either invalid or points to a non-existing

}

GET​ /api​/v1​/asset/download

Returns URL to download asset.

Request

Parameter Type & Explanation

AssetUID string Unique project ID, mandatory.

Curl:

curl -X GET "http://api.approval.studio/api/v1/asset/download?AssetUID=XXXXXXXXX

 -H "accept: text/plain"
 -H "Authorization: Bearer YYYYYYYYYYYYYYYYYY"

Responses

HTTP Code Response

200 Success. URL generated.

{

 "version": "1.0",

 

 "statusCode": 200,

 "message": "GET Request successful.",
 "result": {

 "downloadURL": "https://approval.studio/ProofApi/DownloadAsset/ZZZZZZZZZZZ[.

 "asset": {
 "assetUID": "XXXXXXXXXXXXX",

 "version": 1,

 "name": "FileName.jpg",

 "status": "Processed",
 "pagesCount": 1,

 "created": "2020-12-03T23:54:53.40858",

 "fileSize": 20743
 }

 }

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Asset with the given ID not found.

{

 "version": "1.0",

 "statusCode": 404,
 "message": "Asset not found."

}

GET​ /api​/v1​/asset​/proofreport

Returns URL to download asset’s proof report.

Request

 

 

Parameter Type & Explanation

AssetUID string Unique project ID, mandatory.

Curl:

curl -X GET "http://api.approval.studio/api/v1/asset/proofreport?AssetUID=XXXXXX

 -H "accept: text/plain"

 -H "Authorization: Bearer YYYYYYYYYYYYYYYYYY"

Responses

HTTP Code Response

200 Success. URL generated.

{

 "version": "1.0",
 "statusCode": 200,

 "message": "GET Request successful.",

 "result": {
 "downloadURL": "https://approval.studio/ProofApi/GetProofReport/ZZZZZZZZZZZ[

 "asset": {

 "assetUID": "XXXXXXXXXXXXX",

 "version": 1,
 "name": "FileName.jpg",

 "status": "Processed",

 "pagesCount": 1,
 "created": "2020-12-03T23:54:53.40858",

 "fileSize": 20743

 }
 }

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Asset with the given ID not found.

{
 "version": "1.0",

 "statusCode": 404,

 "message": "Asset not found."
}

Reference documents management

Method/Path Description

POST /api/v1/refdoc/upload
Uploads a reference document and initiates

document’s processing.

POST

/api/v1/refdoc/upload_url

Uploads an document taken from the publicly
accessible URL and initiates its processing.

POST /api/v1/refdoc/add_url Adds a URL as a reference document.

GET /api/v1/refdoc/download Returns a URL to download the reference document.

DELETE/api/v1/refdoc Deletes a reference document.

POST /api/v1/refdoc/upload

Uploads a document as a local file and assigns it to the given project.
generally, works like asset uploading,

Request

 

Parameter Type & Explanation

ProjectUID string Unique project ID, mandatory.

FileName
form file Document file name, mandatory. Note: It’s just a name, not a

path.

Curl:

curl -X POST "http://api.approval.studio/api/v1/refdoc/upload?ProjectUID=XXXXXXX
 -H "accept: text/plain"

 -H "Authorization: Bearer YYYYYYYYYYYYYY"

 -H "Content-Type: multipart/form-data"

 -F "uploadedFile=refdocfilename.jpg;type=image/jpeg"

Responses

HTTP Code Response

200 Success. "Asset uploaded successfully and is pending to process.

{

 "version": "1.0",
 "statusCode": 200,

 "message": "Document uploaded successfully and is pending to process.

 Track its status to catch when it is ready to use.",
 "result": {

 "refDocUID": "AAAAAAAAAAAAAAAAA" // newly generated document id.

 }
}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

 

HTTP
Code

Response

404
Error: Project UID is either invalid or points to a non-existing or inactive

project.

{

 "version": "1.0",
 "statusCode": 404,

 "message": "Project UID provided is either invalid or points to a non-existing

}

POST /api/v1/refdoc/upload_url

This method uploads reference document by taking it from the publicly accessible http(s)
server.

A mandatory URL parameter points to the file to upload and process as a project’s asset.

Request

Parameter Type & Explanation

ProjectUID string Unique project ID, mandatory.

FileName

form file Document file name, optional. Note: It’s just a name, not a path.
If not provided, the filename would be assigned automatically using

filename taken form http header Content-Disposition . If this header is

not provided, filename would be "asset.extension" where extension is
taken from http content type.

URL string URL to download a file from.

Curl:

curl -X POST "http://api.approval.studio/api/v1/refdoc/upload_url"
 -H "accept: text/plain"

 -H "Authorization: Bearer YYYYYYYYYYYYYY"

 

 

 -H "Content-Type: application/json-patch+json"

 -d '{
 "projectUID": "XXXXXXXXX",

 "fileName": "filename.jpeg",

 "url": "https://cdn.images.com/ZZZZZZZZZZZ"
 }'

Responses

HTTP Code Response

200 Success. "Document uploaded successfully and is pending to process.

{
 "version": "1.0",

 "statusCode": 200,

 "message": "Document uploaded successfully and is pending to process. Track it
 "result": {

 "refDocUID": "XXXXXXXXX"

 }

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP
Code

Response

404
Error: Project UID is either invalid or points to a non-existing or inactive

project.

{

 "version": "1.0",

 "statusCode": 404,

 "message": "Project UID provided is either invalid or points to a non-existing
}

POST /api/v1/refdoc/add_url

Plain text URL is a kind of a reference document in the Approval Studio. You can either upload

a file or add a URL to the list of reference documents in a project.

This method adds a URL to the document list for a given project.

Curl:

curl -X POST "http://api.approval.studio/api/v1/refdoc/add_url"

 -H "accept: text/plain"

 -H "Authorization: Bearer YYYYYYYYYYYYYY"
 -H "Content-Type: application/json-patch+json"

 -d '{

 "projectUID": "XXXXXXXXX",
 "url": "https://cdn.images.com/ZZZZZZZZZZZ"

 }'

Responses

HTTP Code Response

200 Success. "Document uploaded successfully and is pending to process.

{

 "version": "1.0",

 "statusCode": 200,

 "message": "Reference document's URL added to the list.",
 "result": {

 "refDocUID": "XXXXXXXXX"

 }
}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

 

 

HTTP
Code

Response

404
Error: Project UID is either invalid or points to a non-existing or inactive

project.

{

 "version": "1.0",
 "statusCode": 404,

 "message": "Project UID provided is either invalid or points to a non-existing

}

GET /api/v1/refdoc/download

This method returns URL to download a given reference document.

If you need to download the document itself, please use any available suitable technology to

do this using provided URL.

Curl:

curl -X POST "http://api.approval.studio/api/v1/refdoc/download?refDocUID=XXXXXX
 -H "accept: text/plain"

 -H "Authorization: Bearer YYYYYYYYYYYYYY"

Responses

HTTP Code Response

200 Success. URL returned in the response JSON.

{

 "version": "1.0",

 "statusCode": 200,
 "message": "GET Request successful.",

 "result": {

 "downloadURL": "https://ZZZZZZZZZZ"

 }

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP
Code

Response

404
Error: Reference document UID is either invalid or points to a non-existing

or deleted document.

{
 "version": "1.0",

 "statusCode": 404,

 "message": "Reference document not found."
}

DELETE/api/v1/refdoc

This method deletes a reference document or reference URL.

Curl:

curl -X DELETE "http://api.approval.studio/api/v1/refdoc"
 -H "accept: text/plain"

 -H "Authorization: Bearer YYYYYYYYYYYYYY"

Responses

HTTP Code Response

200 Success. URL returned in the response JSON.

{

 "version": "1.0",

 "statusCode": 200,

 "message": "Document deleted."

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP
Code

Response

404
Error: Reference document UID is either invalid or points to a non-existing

or deleted document.

{
 "version": "1.0",

 "statusCode": 404,

 "message": "Reference document not found or it was already deleted."
}

Task management

Method/Path Description

GET​ /api​/v1​/task/all Gets a list of tasks assigned to the user.

GET​ /api​/v1​/task Gets a task instance.

DELETE​ /api​/v1​/task Deletes an task.

POST​ /api​/v1​/task/asset_upload Creates a new AssetUpload task.

POST​ /api​/v1​/task​/refdoc_upload Creates a new RefDocUpload task.

POST​ /api​/v1​/task​/review_asset Creates a new CreateReviewAsset task.

PUT ​/api​/v1​/task​/complete Completes a task.

GET​ /api​/v1​/task/all

Gets a list of tasks optionally filtered by task types, assigned to a currently logged-in user.

This is what a user sees in Approval Studio web application in the list of tasks in the

dashboard.

Parameter Type & Explanation

Types string One or more task types, comma-separated.

Default value is UploadAssets, UploadRefDocs, ReviewAssets,

ExternalReviewAssets, UploadChangedAsset, UploadVideo,

ExternalReviewVideo, ReviewVideo , AssignUserRoles .

If no parameter is provided or it is empty, a default list of types is used (see

above).

Curl:

curl -X GET "http://api.approval.studio/api/v1/task/all?Types=UploadAssets"

 -H "accept: text/plain"

 -H "Authorization: Bearer YYYYYYYYYY"

Responses

HTTP Code Response

200 Success. Task instance returned.

{

 "version": "1.0",
 "statusCode": 200,

 "message": "GET Request successful.",

 "result": [
 {

 "taskUID": "XXXXXXXXXXX1",

 "projectUID": "YYYYYYYYYYYY1",

 "projectName": "Project name, string",
 "type": "UploadAssets|UploadRefDocs|ReviewAssets|ExternalReviewAsset

 "status": "Pending|Closed|Approved|Rejected|ApprovedWithChanges",

 

 "created": "2020-11-27T15:39:59.864882",

 "closed": "2020-11-27T15:40:51.407384",
 "user": {

 "userUID": "92AFE33153124F0980E43EF80133FE9B",

 "fullName": "John Smith",
 "email": "john.smith@email.com"

 },

 "reviewUrl": string , // URL to launch prooft

 // Appears only in Revi
"requestedAssetName": "butterfly_poster.pdf" // Name of the asse

 // Appears only in

},
 {

 "taskUID": "XXXXXXXXXXX2",

 "projectUID": "YYYYYYYYYYYY2",
 ...

 },

 ...
]

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

GET​ /api​/v1​/task

Gets a task instance for a given task id.

Parameter Type & Explanation

TaskUID string Unique task ID.

Curl:

curl -X GET "http://api.approval.studio/api/v1/task?TaskUID=XXXXXXXXXXXXXXXX"
 -H "accept: text/plain"

 -H "Authorization: Bearer YYYYYYYYYY"

 

Responses

HTTP Code Response

200 Success. Task instance returned.

{

"version": "1.0",

 "statusCode": 200,
 "message": "GET Request successful.",

 "result": {

 "taskUID": "XXXXXXXXXXX",
 "projectUID": "YYYYYYYYYYYY",

 "projectName": "string",

 "clientUID": "ZZZZZZZZZZZZ",
 "type": "UploadAssets|UploadRefDocs|ReviewAssets|ExternalReviewAssets|Upload

 "status": "Pending|Closed|Approved|Rejected|ApprovedWithChanges",

 "created": "2020-11-27T15:39:59.864882",
 "closed": "2020-11-27T15:40:51.407384",

 "user": {

 "userUID": "92AFE33153124F0980E43EF80133FE9B",
 "fullName": "John Smith",

 "email": "john.smith@email.com"

 },

 "reviewUrl": string, // URL to launch prooftool for given ta
 // Appears only for ReviewAsset task.

 "requestedAssetName": "filename.pdf" // Name of the asset, a task references

 // Appears only in UploadChange
 }

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Task with the given ID not found.

{

 "version": "1.0",

 "statusCode": 404,

 "message": "Task not found"
}

DELETE​ /api​/v1​/task

Deletes a task.

Request

Parameter Type & Explanation

taskUID string Unique task ID.

Curl:

curl -X DELETE "https://api.approval.studio/api/v1/task"

-H "accept: text/plain"

-H "Authorization: Bearer YYYYYYYYYYYYYYYYYYYYYYYYYY"

-H "Content-Type: application/json-patch+json"
-d "{\"taskUID\":\"XXXXXXXXXXX\"}"

Responses

HTTP Code Response

200 Success. Login successful, AUTH token provided.

{
 "version": "1.0",

 "statusCode": 200,

 "message": "Task deleted."
}

HTTP Code Response

400 Error: Parameters’ validation failed.

HTTP Code Response

See HTTP code 400 description.

HTTP Code Response

404 Error: Task with the given ID not found.

{

 "version": "1.0",
 "statusCode": 404,

 "message": "Task not found"

}

HTTP
Code

Response

410
Error: the task is already completed or deleted or approved/rejected. Only

pending task can be deleted.

{
 "version": "1.0",

 "statusCode": 410,

 "message": "The task is not pending and cannot be deleted."
}

POST​ /api​/v1​/task/asset_upload

Creates a new AssetUpload task for a given user providing optional due date and comment.

Request

{

 "projectUID": "XXXXXXXXXXXXXX", // Project this task belongs to, mandatory.
 "userUID": "ZZZZZZZZZZZZZ", // User this task assigned to, mandatory.

 "dueDate": "2020-12-04", // Task due date, UTC, optional.

 "comment": "comment text" // Comment text, optional.
}

Curl:

curl -X POST "https://api.approval.studio/api/v1/task/asset_upload" \
 -H "accept: text/plain" \

 -H "Authorization: Bearer YYYYYYYYYYYYYYYY" \

 -H "Content-Type: application/json-patch+json" \
 -d "{\"projectUID\":\"XXXXXXXXXXXXXXXX\",

 \"userUID\":\"ZZZZZZZZZZZZZ\",

 \"dueDate\":\"2020-12-04T13:11:11.526Z\",

 \"comment\":\"comment text\"}"

Responses

HTTP Code Response

200 Success. Task created.

{

 "version": "1.0",
 "statusCode": 200,

 "message": "Task created."

 "result": {
 "task": {

 "taskUID": "XXXXXXXXXXXXXXXXXXXXXX",

 "projectId": 981,
 "projectUID": "YYYYYYYYYYYYYYYYYYYYYYYYYYYY",

 "type": "UploadAssets",

 "status": "Pending",
 "comment": "Free-form text comment to the task",

 "dueDate": "2020-12-22",

 "created": "2020-12-22",
 "userUID": "ZZZZZZZZZZZZZ",

 "userName": "John Smith",

 "userEmail": "john.smith@gmail.com"

 }
 }

}

HTTP Code Response

400 Error: Parameters’ validation failed.

HTTP Code Response

See HTTP code 400 description.

|

HTTP Code Response

404 Error: Given project not found.

{

 "version": "1.0",
 "statusCode": 404,

 "message": "Given project not found."

}

HTTP
Code

Response

412
Error: You cannot create a task for a project in state [Complete]. Only projects

that are Active or OnHold can have tasks.

412 Error: User with UID [ZZZZZZZZZZZZZ] not found.

{

 "version": "1.0",

 "statusCode": 412,
 "message": "You cannot create a task for a project in state [Complete]."

}

POST​ /api​/v1​/task​/refdoc_upload

Creates a new RefDocUpload task for a given user providing optional due date and comment.

Request

{
 "projectUID": "XXXXXXXXXXXXXX", // Project this task belongs to, mandatory.

 "userUID": "ZZZZZZZZZZZZZ", // User this task assign to, mandatory.

 "dueDate": "2020-12-04", // Task due date, UTC, optional.

 "comment": "comment text" // Comment text, optional.
}

Curl:

curl -X POST "https://api.approval.studio/api/v1/task/refdoc_upload" \
 -H "accept: text/plain" \

 -H "Authorization: Bearer YYYYYYYYYYYYYYYY" \

 -H "Content-Type: application/json-patch+json" \

 -d "{\"projectUID\":\"XXXXXXXXXXXXXXXX\",
 \"userUID\":\"ZZZZZZZZZZZZZ\",

 \"dueDate\":\"2020-12-04\",

 \"comment\":\"comment text\" [...] }"

Responses

HTTP Code Response

200 Success. Task created.

{

 "version": "1.0",
 "statusCode": 200,

 "message": "Task created."

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Given project not found.

{

 "version": "1.0",
 "statusCode": 404,

 "message": "Given project not found."

 "result": {

 "task": {

 "taskUID": "XXXXXXXXXXXXXXXXXXXXXX",
 "projectId": 981,

 "projectUID": "YYYYYYYYYYYYYYYYYYYYYYYYYYYY",

 "type": "UploadRefDocs",
 "status": "Pending",

 "comment": "Free-form text comment to the task",

 "dueDate": "2020-12-22",

 "created": "2020-12-22",
 "userUID": "ZZZZZZZZZZZZZ",

 "userName": "John Smith",

 "userEmail": "john.smith@gmail.com"
 }

 }

}

HTTP
Code

Response

412
Error: You cannot create a task for a project in the state Complete . Only

projects that are Active or OnHold can have tasks.

412 Error: User with UID [ZZZZZZZZZZZZZ] not found.

{

 "version": "1.0",

 "statusCode": 412,
 "message": "You cannot create a task for a project in the state [Complete]."

}

POST​ /api​/v1​/task/review_asset

Creates a new Review Asset Task for a given user, project, and a list of assets providing
optional due date and comment.

Request

{

 "projectUID": "XXXXXXXXXXXXXX", // Project this task belongs to, mandatory.

 "userUID": "ZZZZZZZZZZZZZ", // User this task assign to, mandatory.

 "assetUIDs": [

 "AAAAAAAAAAAAAAAA1", // One or more assets to review, namdatory.
 "AAAAAAAAAAAAAAAA2"

],

 "dueDate": "2020-12-04", // Task due date, UTC, optional.
 "comment": "comment text" // Comment text, optional.

}

Curl:

curl -X POST "https://api.approval.studio/api/v1/task/review_asset" \
 -H "accept: text/plain" \

 -H "Authorization: Bearer YYYYYYYYYYYYYYYY" \

 -H "Content-Type: application/json-patch+json" \
 -d "{\"projectUID\":\"XXXXXXXXXXXXXXXX\",

 \"userUID\":\"ZZZZZZZZZZZZZ\",

 \"assetUIDs\":[\"AAAAAAAAAA1\", \"AAAAAAAAAA2\"],
 \"dueDate\":\"2020-12-04\",

 \"comment\":\"comment text\" [...]}"

Responses

HTTP Code Response

200 Success. Task created.

{

 "version": "1.0",

 "statusCode": 200,
 "message": "Task created.",

 "result": {

 "task": {
 "taskUID": "XXXXXXXXXXXXXXXXXXXXXX",

 "projectId": 981,

 "projectUID": "YYYYYYYYYYYYYYYYYYYYYYYYYYYY",
 "type": "ReviewAssets",

 "status": "Pending",

 "comment": "Free-form text comment to the task",

 "dueDate": "2020-12-22",
 "created": "2020-12-22",

 "userUID": "ZZZZZZZZZZZZZ",

 "userName": "John Smith",
 "userEmail": "john.smith@gmail.com"

 }

 }
}

HTTP
Code

Response

400 Error: Parameters’ validation failed.

Error: An asset [XXXXXXXXX] must be a valid UID that points to a

successfully processed asset.

See HTTP code 400 description.

HTTP
Code

Response

404 Error: Given project not found.

404 Error: Asset [AAAAAAAAAAAAAAAA1] not found…

404
Error: Asset [AAAAAAAAAAAAAAAA1] does not belong to project

[XXXXXXXXXXXXXXXX].

{

 "version": "1.0",
 "statusCode": 404,

 "message": "Given project not found."

}

HTTP
Code

Response

412
Error: You cannot create a task for a project in the state [Complete]. Only

projects that are Active or OnHold can have tasks.

412 Error: User with UID [ZZZZZZZZZZZZZ] not found.

{

 "version": "1.0",

 "statusCode": 412,
 "message": "You cannot create a task for a project in the state [Complete]."

}

 

POST​ /api​/v1​/task/review_asset_ext

Creates a new External Review Asset Task for someone who doesn’t have an account in

Approval Studio.

The flow is the following:

1. When a task is created, an email is sent to an email address from the request.

2. Email contains a link (URL) to a proof report review session.

3. Approve or reject terminates the review task and makes the URL expire.

Request

{
 "projectUID": "XXXXXXXXXXXXXX", // Project this task belongs to, mandatory

 "email": "string", // User's email, mandatory.

 "assetUIDs": [
 "AAAAAAAAAAAAAAAA1", // One or more assets to review, namda

 "AAAAAAAAAAAAAAAA2"

],
 "dueDate": "2020-12-04", // Task due date, UTC, optional.

 "password": "string", // Optional password. When provided, the r

 // to enter it before the review session.

 "emailSubject": "string", // Custom email subject line; override tem
 "emailLanguage": "English", // Email language, optional. English is de

 // English, German, French, Polish, Spanis

 "comment": "comment text" // Comment text, optional.
 "isAllowDownloadAssets": true, // When true, allows user to download orig

 "isReadOnly": true // When true, makes a review session read-

 // no comments, no approve/reject. Optiona
}

Curl:

curl -X POST "https://api.approval.studio/api/v1/task/review_asset_ext" \
 -H "accept: text/plain" \

 -H "Authorization: Bearer YYYYYYYYYYYYYYYY" \

 -H "Content-Type: application/json-patch+json" \
 -d "{\"projectUID\":\"XXXXXXXXXXXXXXXX\",

 \"email\":\"ZZZZZZZZZZZZZ\",

 \"assetUIDs\":[\"AAAAAAAAAA1\", \"AAAAAAAAAA2\"],

 \"dueDate\":\"2020-12-04\",

 \"comment\":\"comment text\" [...]}"

Responses

HTTP Code Response

200 Success. Task created.

{

 "version": "1.0",
 "statusCode": 200,

 "message": "Task created.",

 "result": {
 "task": {

 "taskUID": "XXXXXXXXXXXXXXXXXXXXXX",

 "projectId": 981,
 "projectUID": "YYYYYYYYYYYYYYYYYYYYYYYYYYYY",

 "type": "ExternalReviewAssets",

 "status": "Pending",

 "comment": "Free-form text comment to the task",
 "dueDate": "2020-12-22",

 "created": "2020-12-22",

 "userUID": "ZZZZZZZZZZZZZ",
 "userName": "John Smith",

 "userEmail": "john.smith@gmail.com"

 }
 }

}

HTTP
Code

Response

400 Error: Parameters’ validation failed.

Error: An asset [XXXXXXXXX] must be a valid UID that points to a

successfully processed asset.

See HTTP code 400 description.

HTTP
Code

Response

404 Error: Given project not found.

404 Error: Asset [AAAAAAAAAAAAAAAA1] not found…

404
Error: Asset [AAAAAAAAAAAAAAAA1] does not belong to project

[XXXXXXXXXXXXXXXX].

{

 "version": "1.0",

 "statusCode": 404,
 "message": "Given project not found."

}

HTTP
Code

Response

412
Error: You cannot create a task for a project in the state [Complete]. Only

projects that are Active or OnHold can have tasks.

{

 "version": "1.0",
 "statusCode": 412,

 "message": "You cannot create a task for a project in the state [Complete]."

}

PUT ​/api​/v1​/task/complete

Completes a given task.

Note: AssignUserRoles task, related to workflow initialing, is processing in the following way:

If required data (internal and/or external users) is already provided, then task would be

completed.

If required data is not provided, then data->assignUsers group (see below) must be
provided to complete the task.

For example, a workflow is configured to a have two internal users, uploader and

reviewer, and
two external ones. Then you need to have two users in the group data->assignUser-

>internalUsers :

["UploaderUserUID1"], <-- Uploader.

["ReviewerUserUID2"], <-- Reviewer.

You may also provide multiple UIDs for every user in the group:

`[“UploaderUserUID1”, “UploaderUserUID2”], <-- Uploaders

This method validates if all the required data provided, and if not, then HTTP code 412
would be returned with an appropriate comment.

Request

{

 "taskUID": "XXXXXXXXXXXXXX" // Task id to complete.

 "data": {

 "assignUsers": { // AssignUser-task specific data.
 "internalUsers": [

 ["UserUID1", "UserUID2"...], <-- first internal users(s)

 ["UserUID3", "UserUID4"...], <-- second internal user(s)
 [...]

],

 "externallUsers": [
 ["email1@email.com", "email2@email.com"...],

 ["email3@email.com", "email4@email.com"...],

]
 }

 }

}

Curl:

curl -X POST "https://api.approval.studio/api/v1/task/complete" \

 -H "accept: text/plain" \

 -H "Authorization: Bearer YYYYYYYYYYYYYYYY" \
 -H "Content-Type: application/json-patch+json" \

 -d "{\"taskUID\":\"XXXXXXXXXXXXXXXX\", \"data\": {...}}"

Responses

HTTP Code Response

200 Success. Task marked as completed.

{
 "version": "1.0",

 "statusCode": 200,

 "message": "Task completed."
}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Given task not found.

{
 "version": "1.0",

 "statusCode": 404,

 "message": "Task not found."

}

HTTP
Code

Response

410
Error: the task is already completed or deleted or approved/rejected. Only

pending tasks can be completed.

{

 "version": "1.0",

 "statusCode": 410,
 "message": "The task is not pending and cannot be completed."

}

HTTP
Code

Response

412 Error: Only upload-related tasks might be marked as completed:

 

HTTP
Code

Response

Allowed task types: UploadAssets , UploadChangedAsset , UploadRefDocs ,

UploadVideo , AssignUserRoles

{

 "version": "1.0",
 "statusCode": 412,

 "message": "This type of task cannot be manually completed" |

 "This task can not be completed as provided list of users does not
}

Annotations management

Method/Path Description

GET ​/api​/v1​/annotation/all Returns a list of annotations for a given asset .

GET ​/api​/v1​/annotation Returns an annotation.

DELETE ​/api​/v1​/annotation Deletes an annotation.

PUT​ /api​/v1​/annotation​/hide Hides an annotation.

PUT ​/api​/v1​/annotation​/complete Completes an annotation.

PUT ​/api​/v1​/annotation​/uncomplete Un-completes an annotation.

GET ​/api​/v1​/annotation/all

Returns a list of annotations for a given asset and page.

Request

 

Parameter Type & Explanation

AssetUID string Unique project ID, mandatory.

PageNum int Page number, zero-based, mandatory.

curl -X GET "http://api.approval.studio/api/v1/annotation/all?AssetUID=XXXXXXXXX

 -H "accept: text/plain" \

 -H "Authorization: Bearer YYYYYYYYYYYYYYYY"

Responses

HTTP Code Response

200 Success. Annotations returned and a hierarchy built.

{

 "version": "1.0",
 "statusCode": 200,

 "message": "GET Request successful.",

 "result": {
{

 "0": [// Key is the page number

 {
 "commentId": 0,

 "commentUID": "CCCCCCCCCCCCCC",

 "body": "Annotation body",

 "drawingCode": "XXXXXXXXXXXXX",
 "created": "2020-12-04T16:35:11.083Z",

 "pageNum": 0,

 "sequenceId": 0,
 "isCompleted": true,

 "replies": [

 { annotation instance 1}, // The same anno
 { annotation instance 2} [...] // tree-like ann

],

 "user": {
 "userUID": "ZZZZZZZZZZ",

 "fullName": "string",

 "email": "string"
 }

 }

 

 

],

 "1" : [...]
[...]

 }

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Asset with the given ID not found.

{

 "version": "1.0",

 "statusCode": 404,
 "message": "Asset not found."

}

GET ​/api​/v1​/annotation

Returns an annotation for a given annotation id.

Request

Parameter Type & Explanation

AnnotationUID string Unique annotation ID, mandatory.

curl -X GET "http://api.approval.studio/api/v1/annotation?AnnotationUID=XXXXXXXX

 -H "accept: text/plain" \

 -H "Authorization: Bearer YYYYYYYYYYYYYYYY"

Responses

HTTP Code Response

200 Success. Annotations returned and a hierarchy built.

{
 "version": "1.0",

 "statusCode": 200,

 "message": "GET Request successful.",
 "result": {

 "commentUID": "XXXXXXXXXXXXXXXX",

 "body": "Annotation body",
 "drawingCode": "DDDDDDDDDDDD", // Simple json-based markup code.

 "created": "2020-12-04T16:35:11.083Z",

 "pageNum": 0,
 "sequenceId": 0,

 "isCompleted": true,

 "user": {
 "userUID": "ZZZZZZZZZZ",

 "fullName": "string",

 "email": "string"

 }
 }

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Annotation with the given ID not found.

{

 "version": "1.0",

 "statusCode": 404,
 "message": "Annotation not found."

}

DELETE ​/api​/v1​/annotation

Deletes an annotation for a given annotation id.

Request

Parameter Type & Explanation

taskUID string Unique task ID.

Curl:

curl -X DELETE "https://api.approval.studio/api/v1/annotation"

-H "accept: text/plain"

-H "Authorization: Bearer YYYYYYYYYYYYYYYYYYYYYYYYYY"
-H "Content-Type: application/json-patch+json"

-d "{\"annotationUID\":\"XXXXXXXXXXX\"}"

Responses

HTTP Code Response

200 Success. Annotation deleted.

{

 "version": "1.0",

 "statusCode": 200,
 "message": "Annotation deleted."

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Annotation with the given ID not found.

{
 "version": "1.0",

 "statusCode": 404,

 "message": "Annotation not found."

}

HTTP
Code

Response

412
Error: Only the user that created the annotation or comment can delete it. You

cannot delete other’s users’ annotations and this annotation does not belong
to you. Deletion failed.

{

 "version": "1.0",

 "statusCode": 404,
 "message": "You can delete only your annotation."

}

PUT​ /api​/v1​/annotation​/hide

Hides an annotation for a given annotation id.

Request

Parameter Type & Explanation

taskUID string Unique annotation ID.

Curl:

curl -X PUT "https://api.approval.studio/api/v1/annotation/hide"

-H "accept: text/plain"
-H "Authorization: Bearer YYYYYYYYYYYYYYYYYYYYYYYYYY"

-H "Content-Type: application/json-patch+json"

-d "{\"annotationUID\":\"XXXXXXXXXXX\"}"

Responses

HTTP Code Response

200 Success. Annotation was hidden.

{
 "version": "1.0",

 "statusCode": 200,

 "message": "Annotation was hidden."
}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

406 Error: A user can hide only their own annotation.

404 Error: Annotation with the given ID not found.

{
 "version": "1.0",

 "statusCode": 404,

 "message": "Annotation not found."

}

PUT ​/api​/v1​/annotation​/complete

Completes an annotation for a given annotation id.

Request

Parameter Type & Explanation

taskUID string Unique annotation ID.

Curl:

curl -X PUT "https://api.approval.studio/api/v1/annotation/complete"
-H "accept: text/plain"

-H "Authorization: Bearer YYYYYYYYYYYYYYYYYYYYYYYYYY"

-H "Content-Type: application/json-patch+json"

-d "{\"annotationUID\":\"XXXXXXXXXXX\"}"

Responses

HTTP Code Response

200 Success. Annotation was marked as completed.

{

 "version": "1.0",
 "statusCode": 200,

 "message": "Annotation was completed."

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

404 Error: Annotation with the given ID not found.

406 Error: Annotation is already completed.

{

 "version": "1.0",
 "statusCode": 404,

 "message": "Annotation not found."

}

PUT ​/api​/v1​/annotation/uncomplete

Un-completes an annotation for a given annotation id.

Request

Parameter Type & Explanation

taskUID string Unique annotation ID.

Curl:

curl -X PUT "https://api.approval.studio/api/v1/annotation/uncomplete"

-H "accept: text/plain"

-H "Authorization: Bearer YYYYYYYYYYYYYYYYYYYYYYYYYY"
-H "Content-Type: application/json-patch+json"

-d "{\"annotationUID\":\"XXXXXXXXXXX\"}"

Responses

HTTP Code Response

200 Success. Annotation was marked as uncompleted.

{

 "version": "1.0",

 "statusCode": 200,
 "message": "Annotation was uncompleted."

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

404 Error: Annotation with the given ID not found.

406 Error: Annotation is already completed.

{
 "version": "1.0",

 "statusCode": 404,

 "message": "Annotation not found."
}

Users management

Method/Path Description

GET ​/api​/v1​/users Returns all clients(tenants) with users.

GET ​/api​/v1​/user/loggedin Returns currently logged in user user.

GET ​/api​/v1​/users

This method returns a list of available active users per tenant (client) and a template list for
every client.

Please read more about the concept of project templates in the project methods’ group.

Curl:

curl -X GET "https://api.approval.studio/api/v1/users"

 -H "accept: text/plain"

 -H "Authorization: Bearer YYYYYYYYYYYYYYYYYYYYYYYYYY"

Responses

HTTP Code Response

200 Success. List of users with companies they belong to returned.

{

 "version": "1.0",
 "statusCode": 200,

 "message": "GET Request successful.",

 "result": {

 "clients": [
 {

 "clientUID": "XXXXXXXXXXXXXXXXXXXX",

 "name": "HiTech Service",
 "users": [

 {

 "userUID": "UUUUUUUUUUUUUUUUUUU1",

 "fullName": "John Smith",

 "email": "john.smith@gmail.com",
 "role": "Administrator|RegularUser"

 },

 [...]
],

 "templates": [

 {

 "templateUID": "TTTTTTTTTTTTTTTTTTT",
 "name": "First template",

 "data": {

 "key": "value",
 "key1": "value1"

 }

 },
 [...]

],

 "kanbanColumns": [// List of kanban columns configured for the given cl
 {

 "name": "Active Projects",

 "kanbanColumnUID": "p8i41"
 },

 {

 "name": "In Production",

 "kanbanColumnUID": "d4df5a"
 }

],
 "folders": [

 {

 "folderUID": "#shared#",
 "name": ""

 },

 {
 "folderUID": "ib0t",

 "name": "10_04_2024_01"

 }
]

 },

 [...]

 }
}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

GET ​/api​/v1​/user/loggedin

This method returns a currently logged in user; this is the used that was used when creating

an authorization token in method POST /api/v1/token/login .

Curl:

curl -X GET "https://api.approval.studio/api/v1/users"
 -H "accept: text/plain"

 -H "Authorization: Bearer YYYYYYYYYYYYYYYYYYYYYYYYYY"

Responses

HTTP
Code

Response

200
Success. List of users with companies they belong to returned and a

complete list of clients including inactive ones.

{
 "version": "1.0",

 "statusCode": 200,

 "message": "GET Request successful.",
 "result": {

 "user": {

 "userUID": "XXXXXXXXXXXXXXXXXXXX",

 "fullName": "John Smith",
 "email": "john.smith@company.com",

 "role": "Administrator"

 },
 "clients": [

 {

 "clientUID": "YYYYYYYYYYYYYYYYYYYY",
 "name": "Client Name",

 "status": "Active|Inactive",

 "clientType": "Pro|Lite",
 "kanbanColumns": [

 {

 "kanbanColumnUID": "XYZ",
 "name": "Column One"

 },

 {

 "kanbanColumnUID": "ZYX",
 "name": "Column Two"

 }

]
 },

 ...

]
 }

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

Webhooks

Approval Studio API uses webhooks to notify your application when an event happens.
Webhooks are particularly useful for asynchronous events like when an asset is accepted or

rejected or when a new task is created or someone made a comment or a new asset version is

uploaded etc.

Begin using the webhooks in three steps:

1. Create a webhook endpoint on your server.
2. Register the endpoint with Webhook management method POST ​/api​/v1​/webhook.

3. Test it to ensure that you can receive events using method PUT ​/api​/v1​/webhook/test.

Webhooks generally refer to a combination of elements that collectively create a notification

and reaction system within a larger integration.

The webhook endpoint is code on your server, which could be written in C#, Java, Ruby, PHP,

Node.js, or any other language/technology you prefer. The webhook endpoint has an
associated URL (e.g., https://example.com/webhook).

Note: Explanations on how to build an endpoint are out of the scope of this document.

The Approval Studio notifications are Event objects. Those event objects contain all the

relevant information about what just happened, including the type of event and the data

associated with that event. The webhook endpoint uses the event details to take any required
actions.

https://example.com/webhook

Client API Endpoint Integration Host

1. Webhook setup.

POST ​/api​/v1​/webhookPOST ​/api​/v1​/webhook

SecretIDSecretID

Store SecretID in DB or config.Store SecretID in DB or config.

Webhook installed.

2. Event processing.

Event + SecretEvent + Secret

HTTP Code 200HTTP Code 200

Validate against stored Secret in 'Api-Secret' header.Validate against stored Secret in 'Api-Secret' header.

Validate uniqueness of EventID.Validate uniqueness of EventID.

Process integration flow.Process integration flow.

Business flow/sample.

Call API for retrieving objects etc...Call API for retrieving objects etc...

responses...responses...

Client API Endpoint Integration Host

Security

 

The API host provides a Secret ID with every event object posted on an endpoint. The

endpoint needs to check against this ID for every incoming post to avoid spamming. Keep
secret id safe.

Retry logic

Webhook host implements a simple retry logic in order to try to deliver events in case of

possible troubles on the endpoint side

If the endpoint does not return HTTP code 200, the webhooks host starts retrying posting the

same event object up to ~30 minutes. After that time the event delivery silently fails.

Event object

An event object is a JSON document that API posts on a selected endpoint. It generally has
the following structure:

{

 "EventId":"DY3h1Pl040uIRvL74oKFlQ", // Unique event id.
 "EventType":"annotation.added", // Codename of the event, see below

 "Created":"2021-02-18T14:08:08.615088Z", // UTC datetime when the event was

 "Data": { // Data block, event-type dependent
 "SomeData": "XXXXXXXX"

 }

}

EventID is unique for every Event object. If for whatever reason, the API host makes more
than one post on your endproint with the same event object, you can identify it by reading

EventID.

Event types are self-explanatory:

Event code Description

project.created Fires when a new project is created.

project.edited
Fires when a project’s attribute changes, like name, description,

due date, etc.

Event code Description

project.state Fires when project state changes.

asset.uploaded
Fires when an asset or a new version of an existing asset is

uploaded.

asset.deleted Fires when asset deleted.

refdoc.uploaded A new reference document uploaded.

refdoc.deleted An existing reference document is deleted.

annotation.added An annotation to asset is created.

annotation.edited An annotation is edited.

annotation.deleted An annotation is deleted.

task.created A new task of any type is created.

task.completed A task is marked as completed.

task.deleted A task is deleted.

task.approved An asset review task marked as approved.

task.rejected An asset review task marked as rejected.

webhook.test Dummy event object for the testing endpoint.

project.created

Fires when a new project is created.

{

 "EventId": "XppRxqUyNEqYrZtY9lRBdA",

 "EventType": "project.created",

 "Created": "2021-02-18T23:22:33.2944308Z",
 "Data": {

 "ProjectUID": "B0CADA6D72824F85A38BE8471503D204", // Unique ID of a newl

 "Name": "ProjectName plain text", // Project name.
 "Project": { // Here is a Project entity as it is

 // in the GET ​/api/v1/project method.

 

 [...]

 "ProjectUID": "XXXXXXXXXXXX",
 "ProjectState": "OnHold",

 "Name": "string",

 "Customer": "string",
 "Project": "string",

 "Design": "string",

 "Revision": "string",

 "Description": "string",
 "Tags": [

 "string",

 "string"
],

 "ReviewStatus": {

 "PendingCount": 1,
 "ApprovedCount": 2,

 "RejectedCount": 3

 },
 "Created": "2021-04-29T11:56:44.690266Z",

 "Owners": [

 "YYYYYYYYYYYY0",
 "YYYYYYYYYYYY1"

],

 "Client": {

 "ClientUID": "ZZZZZZZZZZZZ",
 "Name": "string"

 },

 "FolderUID": "string",
 "Workflow": {

 "WorkflowUID": "string",

 "Name": "string"
 }

 }

 }
}

project.edited

Fires when one of the project’s attributes is changed: Name , Customer , Project , Design ,

Revision , Description , Tags , DueDate , ProjectOwners .

 {
 "EventId":"xDPuRZ1F_Ea03fO-WPZqnQ",

 

 

 "EventType":"project.edited",

 "Created":"2021-02-18T23:47:17.7572002Z",
 "Data": {

 "ProjectUID":"XXXXXXXXXXXXXXXXXX", // Unique ID o

 "Attribute":"Name", // Attribute n
 "Value":"New project name", // New attribu

 "Project" : { // Here is a P

 // in the GET

 [...]
 }

 }

}

project.state

Fires when the project’s state is changed, interactively or automatically by Approval Studio

itself.

{
 "EventId": "xDPuRZ1F_Ea03fO-WPZqnQ",

 "EventType": "project.edited",

 "Created": "2021-02-18T23:47:17.7572002Z",
 "Data": {

 "ProjectUID": "XXXXXXXXXXXXXXXXXX", // Unique ID of a project where the

 "Attribute": "Name", // Attribute name, see the list above.

 "Value": "New project name", // New attribute value.
 "Project": { // Here is a Project entity as it is

 // in the GET ​/api/v1/project method.

 [...]
 }

 }

}

asset.uploaded

Fires when an asset (or an asset version) is uploaded and successfully processed. If asset

processing fails due to any possible reason, an event is not sent.

{

 "EventId": "inuBFhnHn0CUZ4u4OO-8Ww",
 "EventType": "asset.uploaded",

 "Created": "2021-02-19T12:57:53.9413529Z",

 "Data": {
 "ProjectUID": "XXXXXXXXXXXXXXXXXX",

 "AssetUID": "YYYYYYYYYYYYYYYYYY",

 "Name": "filename.png",
 "Project": { // Here is a Project entity as it is

 // in the GET ​/api/v1/project method.

 [...]

 }
 }

}

asset.deleted

Fires when an asset (or an asset version) is deleted.
Note: when an asset is deleted, all the related objects – tasks, comments, attachments – are

deleted as well, but you will not get separate webhook calls for them.

{
 "EventId": "__Z6LClFFkyxeEPeVx-ytQ",

 "EventType": "asset.deleted",

 "Created": "2021-02-19T13:12:39.2669051Z",

 "Data": {
 "ProjectUID": "XXXXXXXXXXXXXXXXXX",

 "AssetUID": "YYYYYYYYYYYYYYYYYY",

 "Project": { // Here is a Project entity as it is
 // in the GET ​/api/v1/project method.

 [...]

 }
 }

}

refdoc.uploaded

Fires when a reference document is uploaded and processed successfully.

{

 "EventId": "q2bwNSmAoUO0wXMVTyn7Cg",

 "EventType": "refdoc.uploaded",

 "Created": "2021-02-19T13:33:57.6370653Z",
 "Data": {

 "ProjectUID": "XXXXXXXXXXXXXXXXXX",

 "RefDocUID": "YYYYYYYYYYYYYYYYYY",

 "Name": "refdocument.docx",
 "Project": { // Here is a Project entity as it is

 // in the GET ​/api/v1/project method.

 [...]
 }

 }

}

refdoc.deleted

Fires when a reference document is deleted.

{

 "EventId": "AT4ShAVLN0Ck7kVhMHYzUw",

 "EventType": "refdoc.deleted",
 "Created": "2021-02-19T13:37:59.3381091Z",

 "Data": {

 "ProjectUID": "XXXXXXXXXXXXXXXXXX",
 "RefDocUID": "YYYYYYYYYYYYYYYYYY",

 "Project": { // Here is a Project entity as it is

 // in the GET ​/api/v1/project method.
 [...]

 }

 }

}

annotation.added

Fires when an annotation is added to an asset.

This can be a high-level annotation associated with the selected region on the image, or a

comment (to an annotation).

{

 "EventId": "Vx5S8r4os0K5WlwYFsYRhg",

 "EventType": "annotation.added",
 "Created": "2021-02-19T13:45:24.7158494Z",

 "Data": {

 "ProjectUID": "XXXXXXXXXXXXXXXXXX",

 "AnnotationUID": "YYYYYYYYYYYYYYYYYY",
 "AssetUID": "AAAAAAAAAAAAAAAAAAA",

 "Text": "Annotation text",

 "Project": { // Here is a Project entity as it is

 // in the GET ​/api/v1/project method.
 [...]

 }

 }
}

annotation.deleted

Fires when an annotation or comment to an annotation is deleted.

{

 "EventId": "HdBv5m13CEaZPBAr4E0AIw",
 "EventType": "annotation.deleted",

 "Created": "2021-02-19T14:51:23.9392566Z",

 "Data": {
 "ProjectUID": "XXXXXXXXXXXXXXXXXX",

 "AnnotationUID": "YYYYYYYYYYYYYYYYYY",

 "AssetUID": "AAAAAAAAAAAAAAAAAAA",
 "Project": { // Here is a Project entity as it is

 // in the GET ​/api/v1/project method.

 [...]
 }

 }

}

task.created

Fires when a task is created. Only a task ID is passed to an Event object.

{

 "EventId": "QbLNa0r3UkuLPJ3KZpoDNg",

 "EventType": "task.created",
 "Created": "2021-02-19T15:10:19.7757392Z",

 "Data": {

 "TaskUID": "XXXXXXXXXXXXXXXXXX",
 "Project": { // Here is a Project entity as it is

 // in the GET ​/api/v1/project method.

 [...]
 },

 "Task": { // Here is a Task entity as it is

 // in the GET /api/v1/task.

 

 "taskUID": "XXXXXXXXXXX",

 "projectUID": "YYYYYYYYYYYY",
 "projectName": "string",

 "clientUID": "ZZZZZZZZZZZZ",

 "type": "UploadAssets|UploadRefDocs|ReviewAssets|ExternalReviewAsset
 "status": "Pending|Closed|Approved|Rejected|ApprovedWithChanges",

 "created": "2020-11-27T15:39:59.864882",

 "closed": "2020-11-27T15:40:51.407384",

 "user": {
 "userUID": "92AFE33153124F0980E43EF80133FE9B",

 "fullName": "John Smith",

 "email": "john.smith@email.com"
 },

 "reviewUrl": string, // URL to launch prooftool for given task.

 // Appears only for ReviewAsset task.
 "requestedAssetName": "filename.pdf" // Name of the asset, a task re

 // Appears only in UploadChangedAsset task.

 }
 }

}

task.deleted

Fires when a task is deleted, interactively, or through API.

{
 "EventId": "0Jd-zSoOKU2_PoG6zSb5uQ",

 "EventType": "task.deleted",

 "Created": "2021-02-19T15:20:58.5833087Z",
 "Data": {

 "TaskUID": "XXXXXXXXXXXXXXXXXX",

 "Project": { // Here is a Project entity as it is
 // in the GET ​/api/v1/project method.

 [...]

 },
 "Task": { // Here is a Task entity as it is

 // in the GET /api/v1/task.

 [...]
 }

 }

}

task.approved

Fires when an asset is approved in a proof tool or using API.
TaskUID is an ID of an asset review task associated with a proof tool session.

{

 "EventId": "0Jd-zSoOKU2_PoG6zSb5uQ",
 "EventType": "task.deleted",

 "Created": "2021-02-19T15:20:58.5833087Z",

 "Data": {
 "TaskUID": "XXXXXXXXXXXXXXXXXX",

 "Project": { // Here is a Project entity as it is

 // in the GET ​/api/v1/project method.

 [...]
 },

 "Task": { // Here is a Task entity as it is

 // in the GET /api/v1/task.
 [...]

 }

 }
}

task.rejected

Fires when an asset is rejected in a proof tool or using API.

TaskUID is an ID of an asset review task associated with a proof tool session.

{

 "EventId": "0Jd-zSoOKU2_PoG6zSb5uQ",

 "EventType": "task.deleted",

 "Created": "2021-02-19T15:20:58.5833087Z",
 "Data": {

 "TaskUID": "XXXXXXXXXXXXXXXXXX",

 "Project": { // Here is a Project entity as it is
 // in the GET ​/api/v1/project method.

 [...]

 },
 "Task": { // Here is a Task entity as it is

 // in the GET /api/v1/task.

 [...]
 }

 }

}

webhook.test

Fires when API method PUT ​/api​/v1​/webhook/test is invoked. It works like any other real

event including a secret UID in an HTTP header Api-Secret .

{

 "EventId": "0Jd-zSoOKU2_PoG6zSb5uQ",
 "EventType": "webhook.test",

 "Created": "2021-02-19T15:20:58.5833087Z",

 "Data": {
 "DummyData": "random string"

 }

}

Webhooks management

Method/Path Description

GET ​/api​/v1​/webhooks Returns all webhooks for the current user’s tenant.

POST ​/api​/v1​/webhook Sets us a new webhook.

DEL ​/api​/v1​/webhook Deletes a webhook.

PUT ​/api​/v1​/webhook/test Test a webhook endpoint.

GET ​/api​/v1​/webhooks

Returns all the installed webhooks.
Curl:

curl -X GET "https://api.approval.studio/api/v1/webhooks"

 -H "accept: text/plain"

 

 -H "Authorization: Bearer YYYYYYYYYYYYYYYYYYYYYYYYYY"

Responses

HTTP Code Response

200 Success. List of webhooks.

{

 "version": "1.0",

 "statusCode": 200,
 "message": "GET Request successful.",

 "result": [

 {
 "webhookUID": "XXXXXXXXXXXXXXXXXXXX01",

 "url": "http://xxxxx.com/part/of/url01",

 "secret": "YYYYYYYYYYYYYYYYYYYYY01", // This secret will be sent wit
 "created": "2021-02-09T09:17:27.904911" // to ensure that this is API h

 },

 {

 "webhookUID": "XXXXXXXXXXXXXXXXXXXX02",
 "url": "http://xxxxx.com/part/of/url02",

 "secret": "YYYYYYYYYYYYYYYYYYYYY02",

 "created": "2021-02-09T09:17:27.904911"
 }

]

}

POST ​/api​/v1​/webhook

Sets up a new webhook.

Request

{

 "url": "string", // Valid URL string, http or https.
 "clientUID": "string", // Client UID, optional.

 "eventType": "string" // One of the event type names, optional.

}

 

 

clientUID is an optional client identificator. Events are client-wide, so in the case of

multitenancy, when a user belongs to multiple clients, the events through webhooks are
produced based on the client you provided when creating a webhook. You need to install

multiple webhooks to get events from all tenants you belong to.

If no clientUID is provided, the first client in the list is used.

eventType is an optional event type, please see Event object When provided, it limits the
webhook to be invoked only when the given event type occurs. If it’s not provided, all events

will be sent to the webhook and in this case an API consumer is responsible for filtering events

(when necessary).

Note: The API host might need up to ~1 minute to start processing a newly installed
webhook.

Curl:

curl -X POST "https://api.approval.studio/api/v1/webhook"
 -H "accept: text/plain"

 -H "Authorization: Bearer YYYYYYYYYYYYYYYYYYYYYYYYYY"

 -H "Content-Type: application/json-patch+json"

 -d "{\"url\":\"http://xxxx.com/part/of/url\", \"clientUID\": \"XXXX\", \"ev

Responses

HTTP Code Response

200 Success. A newly created webhook instance returned.

{

 "version": "1.0",
 "statusCode": 200,

 "message": "POST Request successful.",

 "result": {
 "webhookUID": "XXXXXXXXXXXXXXXXXXXX01", // Newly assigned webhook ID.

 "url": "http://xxxx.com/part/of/url", // Url of the webhook, as in the r

 "secret": "YYYYYYYYYYYYYYYYYYYYY01", // This secret will be sent with e
 "created": "2021-02-09T09:17:27.904911" // to ensure that this is API host

 // see HTTP response header "Api-S

 }
}

HTTP
Code

Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

412
Error: Webhook with the given URL is already registered for this tenant. API

does not allow to setup duplicates.

DELETE ​/api​/v1​/webhook

Deletes a webhook with the given ID.
Note that deletion of a webhook might need up to ~1 minute for API host to update.

Curl:

curl -X DELETE "https://api.approval.studio/api/v1/webhook"
 -H "accept: text/plain"

 -H "Authorization: Bearer YYYYYYYYYYYYYYYYYYYYYYYYYY"

 -H "Content-Type: application/json-patch+json"
 -d "{\"webHookUID\":\"XXXXXXXXXXXXXXXXXXXXXXX\"}"

Responses

HTTP Code Response

200 Success. Webhook with the given ID deleted.

{
 "version": "1.0",

 "statusCode": 200,

 "message": "Webhook is successfully deleted."

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

HTTP Code Response

404 Error: Webhook with the given ID not found or was already deleted.

PUT ​/api​/v1​/webhook/test

Test a webhook’s endpoint with dummy data in form of JSON:

{

"EventId":"0Jd-zSoOKU2_PoG6zSb5uQ",

"EventType":"webhook.test",
"Created":"2021-02-19T15:20:58.5833087Z",

"Data": {

"DummyData":"random string"

}
}

When posting test data, the API host uses the same retry logic as it is for real calls, i.e. tries to

re-deliver it in case of failure, so multiple calls are expected if the endpoint fails to accept the
call instantly.

Curl:

curl -X PUT "https://api.approval.studio/api/v1/webhook/test"
 -H "accept: text/plain"

 -H "Authorization: Bearer YYYYYYYYYYYYYYYYYYYYYYYYYY"

 -H "Content-Type: application/json-patch+json"

 -d "{\"webHookUID\":\"XXXXXXXXXXXXXXXXXXXXXXX\"}"

Responses

HTTP Code Response

200 Success. Webhook is tested, see your endpoint logs.

{

 "version": "1.0",
 "statusCode": 200,

 "message": "Webhook is tested, see your endpoint logs."

}

HTTP Code Response

400 Error: Parameters’ validation failed.

See HTTP code 400 description.

404 Error: Webhook with the given ID not found.

